Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 36(11): 3618-3619, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108859

RESUMO

SUMMARY: Mass spectrometry imaging (MSI) can reveal biochemical information directly from a tissue section. MSI generates a large quantity of complex spectral data which is still challenging to translate into relevant biochemical information. Here, we present rMSIproc, an open-source R package that implements a full data processing workflow for MSI experiments performed using TOF or FT-based mass spectrometers. The package provides a novel strategy for spectral alignment and recalibration, which allows to process multiple datasets simultaneously. This enables to perform a confident statistical analysis with multiple datasets from one or several experiments. rMSIproc is designed to work with files larger than the computer memory capacity and the algorithms are implemented using a multi-threading strategy. rMSIproc is a powerful tool able to take full advantage of modern computer systems to completely develop the whole MSI potential. AVAILABILITY AND IMPLEMENTATION: rMSIproc is freely available at https://github.com/prafols/rMSIproc. CONTACT: pere.rafols@urv.cat. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Sistemas Computacionais , Espectrometria de Massas , Fluxo de Trabalho
2.
Metabolites ; 9(8)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382415

RESUMO

Many MALDI-MS imaging experiments make a case versus control studies of different tissue regions in order to highlight significant compounds affected by the variables of study. This is a challenge because the tissue samples to be compared come from different biological entities, and therefore they exhibit high variability. Moreover, the statistical tests available cannot properly compare ion concentrations in two regions of interest (ROIs) within or between images. The high correlation between the ion concentrations due to the existence of different morphological regions in the tissue means that the common statistical tests used in metabolomics experiments cannot be applied. Another difficulty with the reliability of statistical tests is the elevated number of undetected MS ions in a high percentage of pixels. In this study, we report a procedure for discovering the most important ions in the comparison of a pair of ROIs within or between tissue sections. These ROIs were identified by an unsupervised segmentation process, using the popular k-means algorithm. Our ion filtering algorithm aims to find the up or down-regulated ions between two ROIs by using a combination of three parameters: (a) the percentage of pixels in which a particular ion is not detected, (b) the Mann-Whitney U ion concentration test, and (c) the ion concentration fold-change. The undetected MS signals (null peaks) are discarded from the histogram before the calculation of (b) and (c) parameters. With this methodology, we found the important ions between the different segments of a mouse brain tissue sagittal section and determined some lipid compounds (mainly triacylglycerols and phosphatidylcholines) in the liver of mice exposed to thirdhand smoke.

3.
PLoS One ; 13(12): e0208908, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540827

RESUMO

Mass spectrometry imaging (MSI) is a molecular imaging technique that maps the distribution of molecules in biological tissues with high spatial resolution. The most widely used MSI modality is matrix-assisted laser desorption/ionization (MALDI), mainly due to the large variety of analyte classes amenable for MALDI analysis. However, the organic matrices used in classical MALDI may impact the quality of the molecular images due to limited lateral resolution and strong background noise in the low mass range, hindering its use in metabolomics. Here we present a matrix-free laser desorption/ionization (LDI) technique based on the deposition of gold nanolayers on tissue sections by means of sputter-coating. This gold coating method is quick, fully automated, reproducible, and allows growing highly controlled gold nanolayers, necessary for high quality and high resolution MS image acquisition. The performance of the developed method has been tested through the acquisition of MS images of brain tissues. The obtained spectra showed a high number of MS peaks in the low mass region (m/z below 1000 Da) with few background peaks, demonstrating the ability of the sputtered gold nanolayers of promoting the desorption/ionization of a wide range of metabolites. These results, together with the reliable MS spectrum calibration using gold peaks, make the developed method a valuable alternative for MSI applications.


Assuntos
Metaboloma/genética , Metabolômica/métodos , Imagem Molecular/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ouro/química , Metabolômica/tendências , Imagem Molecular/tendências , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/tendências
4.
Mass Spectrom Rev ; 37(3): 281-306, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-27862147

RESUMO

Mass spectrometry imaging (MSI) is a label-free analytical technique capable of molecularly characterizing biological samples, including tissues and cell lines. The constant development of analytical instrumentation and strategies over the previous decade makes MSI a key tool in clinical research. Nevertheless, most MSI studies are limited to targeted analysis or the mere visualization of a few molecular species (proteins, peptides, metabolites, or lipids) in a region of interest without fully exploiting the possibilities inherent in the MSI technique, such as tissue classification and segmentation or the identification of relevant biomarkers from an untargeted approach. MSI data processing is challenging due to several factors. The large volume of mass spectra involved in a MSI experiment makes choosing the correct computational strategies critical. Furthermore, pixel to pixel variation inherent in the technique makes choosing the correct preprocessing steps critical. The primary aim of this review was to provide an overview of the data-processing steps and tools that can be applied to an MSI experiment, from preprocessing the raw data to the more advanced strategies for image visualization and segmentation. This review is particularly aimed at researchers performing MSI experiments and who are interested in incorporating new data-processing features, improving their computational strategy, and/or desire access to data-processing tools currently available. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:281-306, 2018.


Assuntos
Processamento de Sinais Assistido por Computador , Software , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Calibragem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Metabolômica , Análise Multivariada , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/estatística & dados numéricos , Fluxo de Trabalho
5.
Bioinformatics ; 33(15): 2427-2428, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369250

RESUMO

SUMMARY: R platform provides some packages that are useful to process mass spectrometry imaging (MSI) data; however, none of them provide an easy to use graphical user interface (GUI). Here, we introduce rMSI, an R package for MSI data analysis focused on providing an efficient way to manage MSI data together with a GUI integrated in R environment. MS data is loaded in rMSI custom format optimized to minimize the memory footprint yet maintaining a fast spectra access. The rMSI GUI is designed for simple and effective data exploration and visualization. Moreover, rMSI is designed to be integrated in the R environment through a library of functions that can be used to share MS data across others R packages. The release of rMSI for R environment establishes a novel and flexible platform for MSI data analysis, completely free and open-source. AVAILABILITY AND IMPLEMENTATION: The code, the documentation, a tutorial and example data are available open-source at: github.com/prafols/rMSI. CONTACT: jesus.brezmes@urv.cat. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Espectrometria de Massas/métodos , Software , Animais , Encéfalo/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...