Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(49): e202301835, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326465

RESUMO

The operation of a dissipative network composed of two or three different crown-ether receptors and an alkali metal cation can be temporally driven by the use (combined or not) of two orthogonal stimuli of a different nature. More specifically, irradiation with light at a proper wavelength and/or addition of an activated carboxylic acid, are used to modulate the binding capability of the above crown-ethers towards the metal ion, allowing to control over time the occupancy of the metal cation in the crown-ether moiety of a given ligand. Thus, application of either or both of the stimuli to an initially equilibrated system, where the metal cation is distributed among the crown-ether receptors depending on the different affinities, causes a programmable change in the receptor occupancies. Consequently, the system is induced to evolve to one or more out-of-equilibrium states with different distributions of the metal cation among the different receptors. When the fuel is exhausted or/and the irradiation interrupted, the system reversibly and autonomously goes back to the initial equilibrium state. Such results may contribute to the achievement of new dissipative systems that, taking advantage of multiple and orthogonal stimuli, are featured with more sophisticated operating mechanisms and time programmability.

2.
J Org Chem ; 88(7): 4379-4386, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36926894

RESUMO

Temporal control of molecular motions is receiving increasing attention because it is central to the development of molecular switches and motors and nanoscopic materials with life-like properties. Inspired by previous studies, here, we report that acid 12 can be used to temporally control the conformational freedom around the C-C bond connecting the two aromatic rings of the ditopic bases 4 and 5. Consistent with NMR measurements and DFT calculations, before fuel addition, the conformational motion of the two aromatic rings of both 4 and 5 mainly consists of a large amplitude torsional oscillation spanning about 260° and passing for the anti conformation (the two nitrogen atoms at opposite sides). Immediately after the addition of 12, due to the protonation of one nitrogen and consequent formation of an N-H···N intramolecular hydrogen bond, the torsional oscillation in both 4H+ and 5H+ is not only restricted to a smaller range (about 100°) but explores the previously forbidden conformational space around the syn conformation (the two nitrogen atoms at the same side). However, the new state is an out-of-equilibrium state since decarboxylation of the conjugate base of 12 takes place and, at the end of the process, the system reverts to the more conformationally mobile state.

3.
Acc Chem Res ; 56(7): 889-899, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36916734

RESUMO

ConspectusThe achievement of artificial systems capable of being maintained in out-of-equilibrium states featuring functional properties is a main goal of current chemical research. Absorption of electromagnetic radiation or consumption of a chemical species (a "chemical fuel") are the two strategies typically employed to reach such out-of-equilibrium states, which have to persist as long as one of the above stimuli is present. For this reason such systems are often referred to as "dissipative systems". In the simplest scheme, the dissipative system is initially found in a resting, equilibrium state. The addition of a chemical fuel causes the system to shift to an out-of-equilibrium state. When the fuel is exhausted, the system reverts to the initial, equilibrium state. Thus, from a mechanistic standpoint, the dissipative system turns out to be a catalyst for the fuel consumption. It has to be noted that, although very simple, this scheme implies the chance to temporally control the dissipative system. In principle, modulating the nature and/or the amount of the chemical fuel added, one can have full control of the time spent by the system in the out-of-equilibrium state.In 2016, we found that 2-cyano-2-phenylpropanoic acid (1a), whose decarboxylation proceeds smoothly under mild basic conditions, could be used as a chemical fuel to drive the back and forth motion of a catenane-based molecular switch. The acid donates a proton to the catenane that passes from the neutral state A to the transient protonated state B. Decarboxylation of the resulting carboxylate (1acb), generates a carbanion, which, being a strong base, retakes the proton from the protonated catenane that, consequently, returns to the initial state A. The larger the amount of the added fuel, the longer the time spent by the catenane in the transient, out-of-equilibrium state. Since then, acid 1a and other activated carboxylic acids (ACAs) have been used to drive the operation of a large number of dissipative systems based on the acid-base reaction, from molecular machines to host-guest systems, from catalysts to smart materials, and so on. This Account illustrates such systems with the purpose to show the wide applicability of ACAs as chemical fuels. This generality is due to the simplicity of the idea underlying the operation principle of ACAs, which always translates into simple experimental requirements.

4.
Adv Mater ; 35(7): e2209870, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36420882

RESUMO

Hydrogel actuators are important for designing stimuli-sensitive soft robots. They generate mechanical motion by exploiting compartmentalized (de)swelling in response to a stimulus. However, classical switching methods, such as manually lowering or increasing the pH, cannot provide more complex autonomous motions. By coupling an autonomously operating pH-flip with programmable lifetimes to a hydrogel system containing pH-responsive and non-responsive compartments, autoonenomous forward and backward motion as well as more complex tasks, such as interlocking of "puzzle pieces" and collection of objects are realized. All operations are initiated by one simple trigger, and the devices operate in a "fire and forget" mode. More complex self-regulatory behavior is obtained by adding chemo-mechano-chemo feedback mechanisms. Due to its simplicity, this method shows great potential for the autonomous operation of soft grippers and metamaterials.

5.
J Phys Chem Lett ; 13(24): 5522-5529, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35695810

RESUMO

The dissipative translocation of the Zn2+ ion between two prototypical coordination complexes has been investigated by combining X-ray absorption and 1H NMR spectroscopy. An integrated experimental and theoretical approach, based on state-of-the-art Multivariate Curve Resolution and DFT based theoretical analyses, is presented as a means to understand the concentration time evolution of all relevant Zn and organic species in the investigated processes, and accurately characterize the solution structures of the key metal coordination complexes. Specifically, we investigate the dissipative translocation of the Zn2+ cation from hexaaza-18-crown-6 to two terpyridine moieties and back again to hexaaza-18-crown-6 using 2-cyano-2-phenylpropanoic acid and its para-chloro derivative as fuels. Our interdisciplinary approach has been proven to be a valuable tool to shed light on reactive systems containing metal ions that are silent to other spectroscopic methods. These combined experimental approaches will enable future applications to chemical and biological systems in a predictive manner.


Assuntos
Complexos de Coordenação , Cátions , Complexos de Coordenação/química , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Metais , Raios X , Zinco/química
6.
Chemistry ; 28(26): e202200685, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35262992

RESUMO

This work reports that the composition of a dynamic library (DL) of interconverting imines can be controlled over time in a dissipative fashion by the addition of an activated carboxylic acid used as a chemical fuel. When the fuel is added to the DL, which is initially under thermodynamic equilibrium, the composition of the mixture dramatically changes and a new, dissipative (out of equilibrium) state is reached that persists until fuel exhaustion. Thus, a transient dissipative dynamic library (DDL) is generated that, eventually, reverts back to the initial DL when the fuel is consumed, closing a DL→DDL→DL cycle. The larger the amount of added fuel, the longer the time spent by the system in the DDL state. The transimination reaction is shown to be an optimal candidate for the realization of a dissipative dynamic covalent chemistry (DDCvC).

7.
J Org Chem ; 87(5): 3623-3629, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35196018

RESUMO

The host-guest interaction of a 1,3,5-trisaminocalix[6]arene receptor with N-methylisoquinolinium trifluoromethanesulfonate (Kass of 500 ± 30 M-1 in CD2Cl2) can be dissipatively driven by means of 2-cyano-2-(4'-chloro)phenylpropanoic acid used as a convenient chemical fuel. When the fuel is added to a dichloromethane solution containing the above complex, the host is induced to immediately release the guest in the bulk solution. Consumption of the fuel allows the guest to be re-uptaken by the host. The operation can be satisfactorily reiterated with four subsequent additions of fuel, producing four successive release-reuptake cycles. The percentage of the guest temporarily released in the bulk solution by the host and the time required for the reuptake process can be finely regulated by varying the quantities of added fuel.

8.
Chemistry ; 28(4): e202103825, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34850474

RESUMO

The satisfactory rationalization of complex reactive pathways in solution chemistry may greatly benefit from the combined use of advanced experimental and theoretical complementary methods of analysis. In this work, we combine X-Ray Absorption and 1 H NMR spectroscopies with state-of-the-art Multivariate Curve Resolution and theoretical analyses to gain a comprehensive view on a prototypical reaction involving the variation of the oxidation state and local structure environment of a selected metal ion coordinated by organic ligands. Specifically, we investigate the 2-cyano-2-phenylpropanoic acid reduction of the octahedral complex established by the Cu2+ ion with terpyridine to the tetrahedral complex formed by Cu+ and neocuproine. Through our interdisciplinary approach we gain insights into the nature, concentration time evolution and structures of the key metal (XAS measurements) and organic (1 H NMR measurements) species under reaction. We believe our method may prove to be useful in the toolbox necessary to understand the mechanisms of reactive processes of interest in solution.

9.
Org Biomol Chem ; 20(1): 132-138, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34816861

RESUMO

The temporal control (ON/OFF/ON) of the fluorescence of a dichloromethane/acetonitrile 1 : 1 solution of calixarene 3 decorated with two pyrenyl moieties at the upper rim is attained by the addition of CCl3CO2H used as a convenient chemical fuel.

10.
Chem Sci ; 12(35): 11735-11739, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34659709

RESUMO

We demonstrate here the use of 2-(4-chlorophenyl)-2-cyanopropanoic acid (CPA) and nitroacetic acid (NAA) as convenient chemical fuels to drive the dissipative operation of DNA-based nanodevices. Addition of either of the fuel acids to a water solution initially causes a rapid transient pH decrease, which is then followed by a slower pH increase. We have employed such low-to-high pH cycles to control in a dissipative way the operation of two model DNA-based nanodevices: a DNA nanoswitch undergoing time-programmable open-close-open cycles of motion, and a DNA-based receptor able to release-uptake a DNA cargo strand. The kinetics of the transient operation of both systems can be easily modulated by varying the concentration of the acid fuel added to the solution and both acid fuels show an efficient reversibility which further supports their versatility.

11.
Chem Sci ; 12(21): 7460-7466, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-34163836

RESUMO

In this report it is shown that nitroacetic acid 1 (O2NCH2CO2H) can be conveniently used to control the pH of a water solution over time. Time-programmable sequences of the kind pH1(high)-pH2(low)-pH3(high) can be achieved, where both the extent of the initial pH jump (pH1(high)-pH2(low)) and the time required for the subsequent pH rising (pH2(low)-pH3(high)) can be predictably controlled by a judicious choice of the absolute and relative concentrations of the reagents (acid 1 and NaOH). Successive pH1(high)-pH2(low)-pH3(high) sequences can be obtained by subsequent additions of acid 1. As a proof of concept, the method is applied to control over time the pH-dependent host-guest interaction between alpha-cyclodextrin and p-aminobenzoic acid.

12.
Chem Soc Rev ; 50(13): 7681-7724, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34008654

RESUMO

The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.

13.
Chemistry ; 26(65): 14954-14962, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32757429

RESUMO

In this work, we report that 2-cyano-2-phenylpropanoic acid and its p-Cl, p-CH3 and p-OCH3 derivatives can be used as chemical fuels to control the geometry of the calix[4]arene scaffold in its cone conformation. It is shown that, under the action of the fuel, the cone calix[4]arene platform assumes a "locked" shape with two opposite aromatic rings strongly convergent and the other two strongly divergent ("pinched cone" conformation). Only when the fuel is exhausted, the cone calix[4]arene scaffold returns to its resting, "unlocked" shape. Remarkably, the duration of the "locked" state can be controlled at will by varying the fuel structure or amount. A kinetic study of the process shows that the consume of the fuel is catalyzed by the "unlocked" calixarene that behaves as an autocatalyst for its own production. A mechanism is proposed for the reaction of fuel consumption.

14.
Org Biomol Chem ; 18(20): 3867-3873, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32373832

RESUMO

Second-order rate constants of the aminolysis of 2-cyano-2-phenylpropanoic anhydride 3 by a series of N-methylanilines differently substituted in the aromatic moiety (4a-d) were measured in dichloromethane. The common reaction product of aminolysis is 2-cyano-2-phenylpropanoic acid 1, which is known to be an effective fuel for acid-base driven molecular machines, but cannot be used in molar excess with respect to the machine. The motivation behind the kinetic study has been the prospect of using the aminolysis of 3 to supply the machine with fuel at a rate that is never so high as to overfeed the system, thus avoiding the malfunction of the machine with concomitant waste of fuel. Knowledge of the kinetic parameters dictated the choice of 4c as the best nucleophile in the lot for feeding acid 1 into a catenane-based molecular machine at a rate that ensured a correct operation.

15.
Chemistry ; 25(66): 15205-15211, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31573109

RESUMO

This work aimed to render phenomenologically autonomous the otherwise stepwise operation of a catenane-based molecular switch, which is chemically triggered by the decarboxylation of 2-cyano-2-phenylpropanoic acid (2). Given that any amount of 2 in stoichiometric excess with respect to the catenane is consumed in a side reaction, the authors resorted to the corresponding anhydride 5, the slow hydrolysis of which, due to adventitious water in dichloromethane, continuously produces in situ the actual fuel 2. As a consequence, the machine does not require a reloading after each cycle, but switches back and forth as long as fuel is present.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...