Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 165: 112524, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869526

RESUMO

This paper investigates the mutual interactions between lipids and red wine polyphenols at different stages of the gastrointestinal tract by using the simgi® dynamic simulator. Three food models were tested: a Wine model, a Lipid model (olive oil + cholesterol) and a Wine + Lipid model (red wine + olive oil + cholesterol). With regard to wine polyphenols, results showed that co-digestion with lipids slightly affected the phenolic profile after gastrointestinal digestion. In relation to lipid bioaccessibility, the co-digestion with red wine tended to increase the percentage of bioaccessible monoglycerides, although significant differences were not found (p > 0.05). Furthermore, co-digestion with red wine tended to reduce cholesterol bioaccessibility (from 80 to 49 %), which could be related to the decrease in bile salt content observed in the micellar phase. For free fatty acids, almost no changes were observed. At the colonic level, the co-digestion of red wine and lipids conditioned the composition and metabolism of colonic microbiota. For instance, the growth [log (ufc/mL)] of lactic acid bacteria (6.9 ± 0.2) and bifidobacteria (6.8 ± 0.1) populations were significantly higher for the Wine + Lipid food model respect to the control colonic fermentation (5.2 ± 0.1 and 5.3 ± 0.2, respectively). Besides, the production of total SCFAs was greater for the Wine + Lipid food model. Also, the cytotoxicity of the colonic-digested samples towards human colon adenocarcinoma cells (HCT-116 and HT-29) was found to be significantly lower for the Wine and Wine + Lipid models than for the Lipid model and the control (no food addition). Overall, the results obtained using the simgi® model were consistent with those reported in vivo in the literature. In particular, they suggest that red wine may favourably modulate lipid bioaccessibility - a fact that could explain the hypocholesterolemic effects of red wine and red wine polyphenols observed in humans.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Vinho , Humanos , Polifenóis , Azeite de Oliva
2.
J Agric Food Chem ; 68(1): 106-116, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31841325

RESUMO

In vitro colonic fermentation of saponin-rich extracts from quinoa, lentil, and fenugreek was performed. Production of sapogenins by human fecal microbiota and the impact of extracts on representative intestinal bacterial groups were evaluated. The main sapogenins were found after fermentation (soyasapogenol B for lentil; oleanolic acid, hederagenin, phytolaccagenic acid, and serjanic acid for quinoa; and sarsasapogenin, diosgenin, and neotigogenin acetate for fenugreek). Interindividual differences were observed, but the highest production of sapogenins corresponded to quinoa (90 µg/mL) and fenugreek (70 µg/mL) extracts, being minor for lentil (4 µg/mL). Lentil and quinoa extracts showed a general antimicrobial effect, mainly on lactic acid bacteria and Lactobacillus spp. Significant increases of Bifidobacterium spp. and Lactobacillus spp. were observed for fenugreek in one volunteer. Thus, the transformation of saponin-rich extracts of quinoa, lentil, and fenugreek to sapogenins by human gut microbiota is demonstrated, exhibiting a modulatory effect on the growth of selected intestinal bacteria.


Assuntos
Bactérias/metabolismo , Chenopodium quinoa/metabolismo , Colo/microbiologia , Microbioma Gastrointestinal , Extratos Vegetais/metabolismo , Sapogeninas/metabolismo , Saponinas/metabolismo , Trigonella/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Colo/metabolismo , Fermentação , Humanos , Lens (Planta)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...