Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370004

RESUMO

Excess fat within bone marrow is associated with lower bone density. Metabolic stressors such as chronic caloric restriction (CR) can exacerbate marrow adiposity, and increased glucocorticoid signaling and adrenergic signaling are implicated in this phenotype. The current study tested the role of glucocorticoid signaling in CR-induced stress by conditionally deleting the glucocorticoid receptor (GR) in bone marrow osteoprogenitors (Osx1-Cre) of mice subjected to CR and ad libitum diets. Conditional knockout of the GR (GR-CKO) reduced cortical and trabecular bone mass as compared to wildtype (WT) mice under both ad libitum and CR conditions. No interaction was detected between genotype and diet, suggesting that the GR is not required for CR-induced skeletal changes. The lower bone mass in GR-CKO mice, and the further suppression of bone by CR, resulted from suppressed bone formation. Interestingly, treatment with the -adrenergic receptor antagonist propranolol mildly but selectively improved metrics of cortical bone mass in GR-CKO mice during CR, suggesting interaction between adrenergic and glucocorticoid signaling pathways that affects cortical bone. GR-CKO mice dramatically increased marrow fat under both ad libitum and CR-fed conditions, and surprisingly propranolol treatment was unable to rescue CR-induced marrow fat in either WT or GR-CKO mice. Additionally, serum corticosterone levels were selectively elevated in GR-CKO mice with CR, suggesting the possibility of bone-hypothalamus-pituitary-adrenal crosstalk during metabolic stress. This work highlights the complexities of glucocorticoid and ß-adrenergic signaling in stress-induced changes in bone mass, and the importance of GR function in suppressing marrow adipogenesis while maintaining healthy bone mass.

2.
Blood Adv ; 3(3): 288-300, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30700417

RESUMO

Hemophilia A (HA), a rare X-linked recessive genetic disorder caused by insufficient blood clotting factor VIII, leaves affected individuals susceptible to spontaneous and traumatic hemorrhage. Although males generally exhibit severe symptoms, due to variable X inactivation, females can also be severely impacted. Osteoporosis is a disease of the skeleton predisposing patients to fragility fracture, a cause of significant morbidity and mortality and a common comorbidity in HA. Because the causes of osteoporosis in HA are unclear and in humans confounded by other traditional risk factors for bone loss, in this study, we phenotyped the skeletons of F8 total knockout (F8 TKO) mice, an animal model of severe HA. We found that trabecular bone accretion in the axial and appendicular skeletons of male F8 TKO mice lagged significantly between 2 and 6 months of age, with more modest cortical bone decline. By contrast, in female mice, diminished bone accretion was mostly limited to the cortical compartment. Interestingly, bone loss was associated with a decline in bone formation in male mice but increased bone resorption in female mice, a possible result of sex steroid insufficiency. In conclusion, our studies reveal a sexual dimorphism in the mechanism driving bone loss in male and female F8 TKO mice, preventing attainment of peak bone mass and strength. If validated in humans, therapies aimed at promoting bone formation in males but suppressing bone resorption in females may be indicated to facilitate attainment of peak mass in children with HA to reduce the risk for fracture later in life.


Assuntos
Doenças Ósseas Metabólicas/genética , Reabsorção Óssea/genética , Hemofilia A/genética , Osteogênese/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...