Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 368(3)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33507249

RESUMO

Polar glacier forefields offer an unprecedented framework for studying community assembly processes in regions that are geographically and climatically isolated. Through amplicon sequence variant (ASV) inference, we compared the composition and structure of soil bacterial communities from glacier forefields in Iceland and Antarctica to assess overlap between communities and the impact of established cryptogamic covers on the uniqueness of their taxa. These pioneer microbial communities were found to share only 8% of ASVs and each taxonomic group's contribution to the shared ASV data subset was heterogeneous and independent of their relative abundance. Although the presence of ASVs specific to one glacier forefield and/or different cryptogam cover values confirms the existence of habitat specialist bacteria, our data show that the influence of cryptogams on the edaphic bacterial community structure also varied also depending on the taxonomic group. Hence, the establishment of distinct cryptogamic covers is probably not the only factor driving the uniqueness of bacterial communities at both poles. The structure of bacterial communities colonising deglaciated areas seems also conditioned by lineage-specific limitations in their dispersal capacity and/or their establishment and persistence in these isolated and hostile regions.


Assuntos
Bactérias/genética , Biodiversidade , Camada de Gelo/microbiologia , Microbiologia do Solo , Regiões Antárticas , Regiões Árticas , Bactérias/classificação , RNA Ribossômico 16S/genética
2.
Sci Total Environ ; 762: 143169, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33131854

RESUMO

We still lack studies that provide evidence for direct links between the development of soil surface cryptogamic communities and soil attributes and functioning. This is particularly true in areas free of potentially confounding factors such as different soil types, land uses, or anthropogenic disturbances. Despite the ecological importance of polar ecosystems and their sensitivity to climate change, we are far from understanding how their soils function and will respond to climate change-driven alterations in above- and belowground features. We used two complementary approaches (i.e. cover gradients in the forefront of retreating glaciers as well as long-time deglaciated areas with well-developed cryptogamic cover types) to evaluate the role of cryptogams driving multiple soil biotic and abiotic attributes and functioning rates in polar terrestrial ecosystems. Increases in cryptogamic cover were consistently related to increases in organic matter accumulation, soil fertility, and bacterial diversity, but also in enhanced soil functioning rates in both sampling areas. However, we also show that the ability to influence soil attributes varies among different polar cryptogamic covers, indicating that their differential ability to thrive under climate-change scenarios will largely determine the fate of polar soils in coming decades.


Assuntos
Ecossistema , Solo , Biodiversidade , Mudança Climática , Microbiologia do Solo
3.
Biomimetics (Basel) ; 3(4)2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31105250

RESUMO

Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults and around half of the patients develop metastasis and die shortly after because of the lack of effective therapies for metastatic UM. Consequently, new therapeutic approaches to this disease are welcome. In this regard, microRNAs have been shown to have a key role in neoplasia progression and have the potential to be used as therapeutic tools. In addition, in different cancers including UM, a particular microRNA signature appears that is different from healthy cells. Thus, restoring the regular levels of microRNAs could restore the normal behavior of cells. In this study, four microRNAs downregulated in UM have been chosen to reprogram cancer cells, to promote cell death or increase their sensitivity to the chemotherapeutic SN38. Furthermore, to improve the internalization, stability and/or solubility of the therapeutic molecules employed in this approach, gold nanoparticles (AuNPs) were used as carriers. Remarkably, this study found a synergistic effect when the four oligonucleotides were employed and when the chemotherapeutic drug was added.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...