Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 30(8): 1630-1641, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38319672

RESUMO

PURPOSE: The immunocytokine cergutuzumab amunaleukin (CEA-IL2v) showed manageable safety and favorable pharmacodynamics in phase I/Ib trials in patients with advanced/metastatic carcinoembryonic antigen-positive (CEA+) solid tumors, but this was accompanied by a high incidence of anti-drug antibodies (ADA). We examined B-cell depletion with obinutuzumab as a potential mitigation strategy. EXPERIMENTAL DESIGN: Preclinical data comparing B-cell depletion with rituximab versus obinutuzumab are summarized. Substudies of phase I/Ib trials investigated the effect of obinutuzumab pretreatment on ADA development, safety, pharmacodynamics, and antitumor activity of CEA-IL2v ± atezolizumab in patients with advanced/metastatic or unresectable CEA+ solid tumors who had progressed on standard of care. RESULTS: Preclinical data showed superior B-cell depletion with obinutuzumab versus rituximab. In clinical studies, patients received CEA-IL2v monotherapy with (n = 16) or without (n = 6) obinutuzumab pretreatment (monotherapy study), or CEA-IL2v + atezolizumab + obinutuzumab pretreatment (n = 5; combination study). In the monotherapy study, after four cycles (every 2 weeks treatment), 0/15 evaluable patients administered obinutuzumab pretreatment had ADAs versus 4/6 patients without obinutuzumab. Obinutuzumab pretreatment with CEA-IL2v monotherapy showed no new safety signals and pharmacodynamic data suggested minimal impact on T cells and natural killer cells. Conversely, increased liver toxicity was observed in the combination study (CEA-IL2v + atezolizumab + obinutuzumab pretreatment). CONCLUSIONS: These preliminary findings suggest that obinutuzumab pretreatment before CEA-IL2v administration in patients with CEA+ solid tumors may be a feasible and potent ADA mitigation strategy, with an acceptable safety profile, supporting broader investigation of obinutuzumab pretreatment for ADA mitigation in other settings.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno Carcinoembrionário , Neoplasias , Humanos , Rituximab , Neoplasias/tratamento farmacológico
2.
Anal Chem ; 92(16): 11135-11144, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32459957

RESUMO

Complex biotherapeutic modalities, such as antibody-drug conjugates (ADC), present significant challenges for the comprehensive bioanalytical characterization of their pharmacokinetics (PK) and catabolism in both preclinical and clinical settings. Thus, the bioanalytical strategy for ADCs must be designed to address the specific structural elements of the protein scaffold, linker, and warhead. A typical bioanalytical strategy for ADCs involves quantification of the Total ADC, Total IgG, and Free Warhead concentrations. Herein, we present bioanalytical characterization of the PK and catabolism of a novel ADC. MEDI3726 targets prostate-specific membrane antigen (PMSA) and is comprised of a humanized IgG1 antibody site-specifically conjugated to tesirine (SG3249). The MEDI3726 protein scaffold lacks interchain disulfide bonds and has an average drug to antibody ratio (DAR) of 2. Based on the structural characteristics of MEDI3726, an array of 4 bioanalytical assays detecting 6 different surrogate analyte classes representing at least 14 unique species was developed, validated, and employed in support of a first-in-human clinical trial (NCT02991911). MEDI3726 requires the combination of heavy-light chain structure and conjugated warhead to selectively deliver the warhead to the target cells. Therefore, both heavy-light chain dissociation and the deconjugation of the warhead will affect the activity of MEDI3726. The concentration-time profiles of subjects dosed with MEDI3726 revealed catabolism of the protein scaffold manifested by the more rapid clearance of the Active ADC, while exhibiting minimal deconjugation of the pyrrolobenzodiazepine (PBD) warhead (SG3199).


Assuntos
Antineoplásicos/farmacocinética , Benzodiazepinas/farmacocinética , Imunoconjugados/farmacocinética , Imunoglobulina G/metabolismo , Pirróis/farmacocinética , Antineoplásicos/sangue , Antineoplásicos/metabolismo , Benzodiazepinas/sangue , Benzodiazepinas/metabolismo , Humanos , Imunoconjugados/sangue , Imunoconjugados/metabolismo , Imunoglobulina G/sangue , Antígeno Prostático Específico/imunologia , Pirróis/sangue , Pirróis/metabolismo
3.
Nat Chem Biol ; 12(10): 779-86, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27479743

RESUMO

Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth in vitro and in vivo. In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK-mTOR-S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK-S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.


Assuntos
Plasticidade Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , Piridonas/farmacologia , Tiofenos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , L-Lactato Desidrogenase/metabolismo , Modelos Moleculares , Estrutura Molecular , Piridonas/química , Relação Estrutura-Atividade , Tiofenos/química
4.
Cytometry B Clin Cytom ; 90(2): 117-27, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26054054

RESUMO

Receptor occupancy (RO) assays are designed to quantify the binding of therapeutics to their targets on the cell surface and are frequently used to generate pharmacodynamic (PD) biomarker data in nonclinical and clinical studies of biopharmaceuticals. When combined with the pharmacokinetic (PK) profile, RO data can establish PKPD relationships, which are crucial for informing dose decisions. RO is commonly measured by flow cytometry on fresh blood specimens and is subject to numerous technical and logistical challenges. To ensure that reliable and high quality results are generated from RO assays, careful assay design, key reagent characterization, data normalization/reporting, and thorough planning for implementation are of critical importance during development. In this article, the authors share their experiences and perspectives in these areas and discuss challenges and potential solutions when developing and implementing a flow cytometry-based RO method in support of biopharmaceutical drug development.


Assuntos
Biomarcadores/análise , Descoberta de Drogas , Citometria de Fluxo/métodos , Humanos , Farmacocinética
5.
J Biol Chem ; 289(51): 35182-92, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25355314

RESUMO

Depletion of the central metabolite NAD in cells results in broad metabolic defects leading to cell death and is a proposed novel therapeutic strategy in oncology. There is, however, a limited understanding of the underlying mechanisms that connect disruption of this central metabolite with cell death. Here we utilize GNE-617, a small molecule inhibitor of NAMPT, a rate-limiting enzyme required for NAD generation, to probe the pathways leading to cell death following NAD depletion. In all cell lines examined, NAD was rapidly depleted (average t½ of 8.1 h) following NAMPT inhibition. Concurrent with NAD depletion, there was a decrease in both cell proliferation and motility, which we attribute to reduced activity of NAD-dependent deacetylases because cells fail to deacetylate α-tubulin-K40 and histone H3-K9. Following depletion of NAD by >95%, cells lose the ability to regenerate ATP. Cell lines with a slower rate of ATP depletion (average t½ of 45 h) activate caspase-3 and show evidence of apoptosis and autophagy, whereas cell lines with rapid depletion ATP (average t½ of 32 h) do not activate caspase-3 or show signs of apoptosis or autophagy. However, the predominant form of cell death in all lines is oncosis, which is driven by the loss of plasma membrane homeostasis once ATP levels are depleted by >20-fold. Thus, our work illustrates the sequence of events that occurs in cells following depletion of a key metabolite and reveals that cell death caused by a loss of NAD is primarily driven by the inability of cells to regenerate ATP.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Compostos Heterocíclicos com 2 Anéis/farmacologia , NAD/metabolismo , Sulfonas/farmacologia , Acetilação/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Western Blotting , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células HCT116 , Compostos Heterocíclicos com 2 Anéis/química , Histonas/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Sulfonas/química , Fatores de Tempo , Tubulina (Proteína)/metabolismo
6.
Cell Cycle ; 13(2): 303-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24247149

RESUMO

Activation of Checkpoint kinase 1 (Chk1) following DNA damage mediates cell cycle arrest to prevent cells with damaged DNA from entering mitosis. Here we provide a high-resolution analysis of cells as they undergo S- and G2-checkpoint bypass in response to Chk1 inhibition with the selective Chk1 inhibitor GNE-783. Within 4-8 h of Chk1 inhibition following gemcitabine induced DNA damage, cells with both sub-4N and 4N DNA content prematurely enter mitosis. Coincident with premature transition into mitosis, levels of DNA damage dramatically increase and chromosomes condense and attempt to align along the metaphase plate. Despite an attempt to congress at the metaphase plate, chromosomes rapidly fragment and lose connection to the spindle microtubules. Gemcitabine mediated DNA damage promotes the formation of Rad51 foci; however, while Chk1 inhibition does not disrupt Rad51 foci that are formed in response to gemcitabine, these foci are lost as cells progress into mitosis. Premature entry into mitosis requires the Aurora, Cdk1/2 and Plk1 kinases and even though caspase-2 and -3 are activated upon mitotic exit, they are not required for cell death. Interestingly, p53, but not p21, deficiency enables checkpoint bypass and chemo-potentiation. Finally, we uncover a differential role for the Wee-1 checkpoint kinase in response to DNA damage, as Wee-1, but not Chk1, plays a more prominent role in the maintenance of S- and G2-checkpoints in p53 proficient cells.


Assuntos
Caspases/metabolismo , Cromossomos Humanos/genética , Fragmentação do DNA/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteína Supressora de Tumor p53/genética , Carbolinas/farmacologia , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Ativação Enzimática , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Mitose/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/metabolismo , Rad51 Recombinase/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Gencitabina
7.
PLoS One ; 8(11): e80533, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265828

RESUMO

The CD20-specific monoclonal antibody rituximab (MabThera(®), Rituxan(®)) is widely used as the backbone of treatment for patients with hematologic disorders. Intravenous administration of rituximab is associated with infusion times of 4-6 hours, and can be associated with infusion-related reactions. Subcutaneous administration of rituximab may reduce this and facilitate administration without infusion-related reactions. We sought to determine the feasibility of achieving equivalent efficacy (measured by endogenous B-cell depletion) and long-term durability of CD20 target coverage for subcutaneously administered rituximab compared with intravenous dosing. In these preclinical studies, male cynomolgus monkeys were treated with either intravenous rituximab or novel subcutaneous formulation of rituximab containing human recombinant DNA-derived hyaluronidase enzyme. Peripheral blood samples were analyzed for serum rituximab concentrations, peripheral B-cell depletion, and CD20 target coverage, including subset analysis according to CD21+ status. Distal lymph node B-cell depletion and CD20 target coverage were also measured. Initial peak serum concentrations of rituximab were significantly higher following intravenous administration than subcutaneous. However, the mean serum rituximab trough concentrations were comparable at 2 and 7 days post-first dose and 9 and 14 days post-second dose. Efficacy of B-cell depletion in both peripheral blood and distal lymph nodes was comparable for both methods. In lymph nodes, 9 days after the second dose with subcutaneous and intravenous rituximab, B-cell levels were decreased by 57% and 42% respectively. Similarly, levels of peripheral blood B cells were depleted by >94% for both subcutaneous and intravenous dosing at all time points. Long-term recovery of free unbound surface CD20 levels was similar, and the duration of B-cell depletion was equally sustained over 2 months for both methods. These results demonstrate that, despite initial peak serum drug level differences, subcutaneous rituximab has similar durability, pharmacodynamics, and efficacy compared with intravenous rituximab.


Assuntos
Anticorpos Monoclonais Murinos/administração & dosagem , Antineoplásicos/administração & dosagem , Administração Intravenosa , Animais , Anticorpos Monoclonais Murinos/farmacocinética , Antígenos CD20/metabolismo , Antineoplásicos/farmacocinética , Subpopulações de Linfócitos B/metabolismo , Imunofenotipagem , Infusões Subcutâneas , Leucócitos Mononucleares , Linfonodos/citologia , Depleção Linfocítica , Macaca fascicularis , Masculino , Receptores de Complemento 3d/metabolismo , Rituximab
8.
Mol Cancer Ther ; 12(11): 2285-95, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24038068

RESUMO

Here we report that GNE-783, a novel checkpoint kinase-1 (CHK1) inhibitor, enhances the activity of gemcitabine by disabling the S- and G2 cell-cycle checkpoints following DNA damage. Using a focused library of 51 DNA-damaging agents, we undertook a systematic screen using three different cell lines to determine which chemotherapeutics have their activity enhanced when combined with GNE-783. We found that GNE-783 was most effective at enhancing activity of antimetabolite-based DNA-damaging agents; however, there was a surprisingly wide range of activity within each class of agents. We, next, selected six different therapeutic agents and screened these in combination with GNE-783 across a panel of cell lines. This revealed a preference for enhanced chemopotentiation of select agents within tumor types, as, for instance, GNE-783 preferentially enhanced the activity of temozolomide only in melanoma cell lines. Additionally, although p53 mutant status was important for the overall response to combinations with some agents; our data indicate that this alone was insufficient to predict synergy. We finally compared the ability of a structurally related CHK1 inhibitor, GNE-900, to enhance the in vivo activity of gemcitabine, CPT-11, and temozolomide in xenograft models. GNE-900 significantly enhanced activity of only gemcitabine in vivo, suggesting that strong chemopotentiation in vitro can translate into chemopotentiation in vivo. In conclusion, our results show that selection of an appropriate agent to combine with a CHK1 inhibitor needs to be carefully evaluated in the context of the genetic background and tumor type in which it will be used.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Animais , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Carbolinas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Dano ao DNA/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Células HCT116 , Células HT29 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Irinotecano , Camundongos , Camundongos Nus , Neoplasias/genética , Neoplasias/patologia , Neoplasias Experimentais , Proteínas Quinases/genética , Piridinas/farmacologia , Pirróis/farmacologia , Temozolomida , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
9.
Blood ; 115(22): 4393-402, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20194898

RESUMO

CD20 is an important target for the treatment of B-cell malignancies, including non-Hodgkin lymphoma as well as autoimmune disorders. B-cell depletion therapy using monoclonal antibodies against CD20, such as rituximab, has revolutionized the treatment of these disorders, greatly improving overall survival in patients. Here, we report the development of GA101 as the first Fc-engineered, type II humanized IgG1 antibody against CD20. Relative to rituximab, GA101 has increased direct and immune effector cell-mediated cytotoxicity and exhibits superior activity in cellular assays and whole blood B-cell depletion assays. In human lymphoma xenograft models, GA101 exhibits superior antitumor activity, resulting in the induction of complete tumor remission and increased overall survival. In nonhuman primates, GA101 demonstrates superior B cell-depleting activity in lymphoid tissue, including in lymph nodes and spleen. Taken together, these results provide compelling evidence for the development of GA101 as a promising new therapy for the treatment of B-cell disorders.


Assuntos
Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Antígenos CD20/imunologia , Linfócitos B/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais Murinos , Citotoxicidade Celular Dependente de Anticorpos , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Feminino , Humanos , Imunidade Celular , Fragmentos Fc das Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Técnicas In Vitro , Depleção Linfocítica/métodos , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/terapia , Macaca fascicularis , Camundongos , Camundongos SCID , Transplante de Neoplasias , Engenharia de Proteínas , Receptores de IgG/imunologia , Rituximab , Transplante Heterólogo
10.
Immunity ; 31(5): 749-60, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19896393

RESUMO

Anergy is a critical physiologic mechanism to sensor self-reactive B cells. However, a biochemical understanding of how anergy is achieved and maintained is lacking. Herein, we investigated the role of the phosphoinositide 3-kinase (PI3K) lipid product PI(3,4,5)P(3) in B cell anergy. We found reduced generation of PI(3,4,5)P(3) in anergic B cells, which was attributable to reduced phosphorylation of the PI3K membrane adaptor CD19, as well as increased expression of the inositol phosphatase PTEN. Sustained production of PI(3,4,5)P(3) in B cells, achieved through conditional deletion of Pten, resulted in failed tolerance induction and abundant autoantibody production. In contrast to wild-type immature B cells, B cell receptor engagement of PTEN-deficient immature B cells resulted in activation and proliferation, indicating a central defect in early B cell responsiveness. These findings establish repression of the PI3K signaling pathway as a necessary condition to avert the generation, activation, and persistence of self-reactive B cells.


Assuntos
Linfócitos B/imunologia , Anergia Clonal , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Antígenos CD19/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais
11.
J Immunol ; 175(8): 5379-89, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16210644

RESUMO

Complement C3 cleavage products mediate the recognition and clearance of toxic or infectious agents. In addition, binding of the C3d fragment to Ag promotes B lymphocyte activation through coengagment of the BCR and complement receptor 2 (CD21). Signal augmentation is thought to be achieved through enhanced recruitment and activation of CD21-associated CD19. In this study we show, using the DBA/1 collagen-induced arthritis (CIA) model, that conjugation of C3d to heterologous type II collagen is sufficient to cause disease in the absence of the mycobacterial components of CFA. Transient depletion of C3 during the inductive phase of CIA delays and lessens the severity of disease, and DBA/1 mice deficient for coreceptor components CD19 or CD21 are not susceptible to CIA. Adoptive transfer experiments revealed that CD21 expression on either B cells or follicular dendritic cells is sufficient to acquire disease susceptibility. Although CD19(-/-) and CD21(-/-) mice produce primary Ab responses to heterologous and autologous type II collagen, they are impaired in the ability to activate T cells, form germinal centers, and produce secondary autoantibody responses. These findings indicate that binding of C3d to self-Ags can promote autoimmunity through enhanced Ag retention and presentation by follicular dendritic cells and B cells, respectively.


Assuntos
Antígenos CD19/fisiologia , Artrite Experimental/imunologia , Complemento C3d/fisiologia , Receptores de Complemento 3d/fisiologia , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Artrite Experimental/metabolismo , Bovinos , Células Cultivadas , Colágeno Tipo II/imunologia , Complemento C3d/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/metabolismo , Linfócitos T/imunologia
12.
Immunol Res ; 31(2): 119-31, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15778510

RESUMO

Although the B-cell antigen receptor (BCR) factors most prominently in the maintenance and differentiation of mature B cells, it is now appreciated that co-receptor molecules can positively or negatively modulate signals through the BCR. Co-receptors are functionally defined as modifiers of BCR engagement and signal transduction, and are distinct from other accessory molecules that act independently to regulate B-cell growth. The co-receptor CD19 functions to augment signals by the pre-BCR/BCR and in doing so can modulate B-cell fate decisions at multiple stages of development. In mature B cells, CD19 also associates with complement receptor 2 (CR2/CD21) and is pivotal for transducing signals induced by co-recognition of complement C3d-fixed antigens by the BCR and CD21. In this article, we focus on recent progress in the understanding of CD19 function through the characterization of mouse models that relate in vivo function to biochemical properties of CD19.


Assuntos
Antígenos CD19/fisiologia , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Diferenciação Celular/fisiologia , Animais , Subpopulações de Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Humanos , Receptores de Antígenos de Linfócitos B/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...