Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 279: 116455, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772140

RESUMO

Microplastics (MPs) pose a clear threat to aquatic organisms affecting their health. Their impact on liver homeostasis, as well as on the potential onset of nonalcoholic fatty liver disease (NAFLD), is still poorly investigated and remains almost unknown. The aim of this study was to evaluate the outcomes of subchronic exposure to polystyrene MPs (PS-MPs; 1-20 µm; 0, 25, or 250 mg/kg b.w./day) on lipid metabolism, inflammation, and oxidative balance in the liver of gilthead seabreams (Sparus aurata Linnaeus, 1758) exposed for 21 days via contaminated food. PS-MPs induced an up-regulation of mRNA levels of crucial genes associated with lipid synthesis and storage (i.e., PPARy, Srebp1, Fasn) without modifications of genes involved in lipid catabolism (i.e., PPARα, HL, Pla2) or transport and metabolism (Fabp1) in the liver. The increase of CSF1R and pro-inflammatory cytokines gene expression (i.e., TNF-α and IL-1ß) was also observed in exposed fish in a dose-dependent manner. These findings were confirmed by hepatic histological evaluations reporting evidence of lipid accumulation, inflammation, and necrosis. Moreover, PS-MPs caused the impairment of the hepatic antioxidant defense system through the alteration of its enzymatic (catalase, superoxide dismutase, and glutathione reductase) and non-enzymatic (glutathione) components, resulting in the increased production of reactive oxygen species (ROS) and malondialdehyde (MDA), as biomarkers of oxidative damage. The alteration of detoxifying enzymes was inferred by the decreased Ethoxyresorufin-O-deethylase (EROD) activity and the increased activity of glutathione-S-transferase (GST) at the highest PS-MP dose. The study suggests that PS-MPs affect the liver health of gilthead seabream. The liver dysfunction and damage caused by exposure to PS-MPs result from a detrimental interplay of inflammation, oxidative damage, and antioxidant and detoxifying enzymatic systems modifications, altering the gut-liver axis homeostasis. This scenario is suggestive of the involvement of MP-induced effects in the onset and progression of hepatic lipid dysfunction in gilthead seabream.


Assuntos
Metabolismo dos Lipídeos , Fígado , Microplásticos , Estresse Oxidativo , Poliestirenos , Dourada , Poluentes Químicos da Água , Animais , Dourada/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poliestirenos/toxicidade , Inflamação/induzido quimicamente , Inflamação/patologia , Citocinas/metabolismo , Citocinas/genética
2.
Animals (Basel) ; 13(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37760361

RESUMO

We investigated the occurrence of organochlorine pollutants (OCs) in the muscle of brown trout and evaluated their potential modulation of parasite infection. The toxicological risk for consumer health was assessed, too. Trout were collected from the Sila National Park (Calabria region, South of Italy). The highest concentrations emerged for the sum of the 6 non-dioxin-like (ndl) indicator polychlorinated biphenyls (Σ6ndl-PCBs), followed by the 1,1,1-trichloro-2,2-di(4-chlorophenyl)-ethane (DDT), dioxin-like PCBs, hexachlorobenzene (HCB), and dieldrin. Measured on lipid weight (LW), the mean value of Σ6ndl-PCBs amounted to 201.9 ng g-1, that of ΣDDTs (the sum of DDT-related compounds) to 100.2 ng g-1, with the major contribution of the DDT-metabolite p,p'-DDE which was detected in all sample units (97.6 ng g-1 on average). Among dioxin-like congeners, PCB 118 showed the highest mean concentration (21.96 ng g-1 LW) and was detected in all sample units. Regression analysis of intestinal parasites on OC concentration was performed, controlling for two potential confounding factors, namely sex and sexual stage. The results evidenced the existence of interactions between the dual stressors in the host-parasite system in the wild. A negative and statistically significant correlation was estimated, suggesting that OCs may decrease parasite infection degree. Regarding the toxicological risk evaluation, OC concentrations were consistently below the current European Maximum Residue Limits.

3.
Sci Total Environ ; 879: 163201, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37011684

RESUMO

Plastics are the most widely discharged waste into the aquatic ecosystems, where they break down into microplastics (MPs) and nanoplastics (NPs). MPs are ingested by several marine organisms, including benthic and pelagic fish species, contributing to organ damage and bioaccumulation. This study aimed to assess the effects of MPs ingestion on gut innate immunity and barrier integrity in gilthead seabreams (Sparus aurataLinnaeus, 1758) fed for 21 days with a diet enriched with polystyrene (PS-MPs; 1-20 µm; 0, 25 or 250 mg /kg b.w./die). Physiological fish growth and health status were not impacted by PS-MPs treatments at the end of experimental period. Inflammation and immune alterations were revealed by molecular analyses in both anterior (AI) and posterior intestine (PI) and were confirmed by histological evaluation. PS-MPs triggered TLR-Myd88 signaling pathway with following impairment of cytokines release. Specifically, PS-MPs increased pro-inflammatory cytokines gene expression (i.e., IL-1ß, IL-6 and COX-2) and decreased anti-inflammatory ones (i.e., IL-10). Moreover, PS-MPs also induced an increase in other immune-associated genes, such as Lys, CSF1R and ALP. TLR-Myd88 signaling pathway may also lead to the mitogen-activated protein kinases (MAPK) signaling pathway activation. Here, MAPK (i.e., p38 and ERK) were activated by PS-MPs in PI, following the disruption of intestinal epithelial integrity, as evidenced by reduced gene expression of tight junctions (i.e. ZO-1, Cldn15, Occludin, and Tricellulin), integrins (i.e., Itgb6) and mucins (i.e., Muc2-like and Muc13-like). Thus, all the obtained results suggest that the subchronic oral exposure to PS-MPs induces inflammatory and immune alterations as well as an impact on intestinal functional integrity in gilthead seabream, with a more evident effect in PI.


Assuntos
Dourada , Animais , Microplásticos/toxicidade , Poliestirenos/toxicidade , Plásticos , Ecossistema , Fator 88 de Diferenciação Mieloide , Imunidade , Citocinas , Intestinos
4.
Animals (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830393

RESUMO

Microplastics (MPs) are pollutants widely distributed in aquatic ecosystems. MPs are introduced mainly by ingestion acting locally or in organs far from the gastroenteric tract. MPs-induced health consequences for fish species still need to be fully understood. We aimed to investigate the effects of the subchronic oral exposure to polystyrene microplastics (PS-MPs) (1-20 µm) in the gilthead seabreams (Sparus aurata) used as the experimental model. We studied the detrimental impact of PS-MPs (25 and 250 mg/kg b.w./day) on the redox balance and antioxidant status in the intestine using histological analysis and molecular techniques. The research goal was to examine the anterior (AI) and posterior intestine (PI) tracts, characterized by morphological and functional differences. PS-MPs caused an increase of reactive oxygen species and nitrosylated proteins in both tracts, as well as augmented malondialdehyde production in the PI. PS-MPs also differently affected gene expression of antioxidant enzymes (i.e., superoxide dismutase, catalase, glutathione reductase). Moreover, an increased up-regulation of protective heat shock proteins (HSPs) (i.e., hsp70 and hsp90) was observed in PI. Our findings demonstrate that PS-MPs are responsible for oxidative/nitrosative stress and alterations of detoxifying defense system responses with differences in AI and PI of gilthead seabreams.

5.
Antioxidants (Basel) ; 11(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35204076

RESUMO

Micro- and nanoplastics (MPs/NPs) are among the most widely distributed pollutants in the environment. It has been suggested that exposure to MPs/NPs can trigger toxicity pathways among which inflammation and oxidative stress (OS) play a pivotal role. Once absorbed, MPs/NPs may act locally or access the bloodstream and, following the translocation process, reach several organs and tissues, including the gonads. Notably, MPs/NPs can bioaccumulate in human and murine placenta, opening new scenarios for toxicological evaluations. We review recent studies on the effects of MPs/NPs on the reproductive health in aquatic and terrestrial organisms of both sexes, focusing on the role of OS and the antioxidant defence system failure as the main underlying mechanisms. Alterations in gametogenesis, embryonic and offspring development, and survival have been shown in most studies and often related to a broken redox balance. All these detrimental effects are inversely related to particle size, whereas they are closely linked to shape, plastic polymer type, superficial functionalization, concentration, and time of exposure. To date, the studies provide insights into the health impacts, but no conclusions can be drawn for reproduction toxicity. The main implication of the few studies on antioxidant substances reveals their potential role in mitigating MP-induced toxic effects.

6.
Brain Behav Immun ; 102: 110-123, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35176443

RESUMO

High-fat diet (HFD) consumption leads to obesity and a chronic state of low-grade inflammation, named metainflammation. Notably, metainflammation contributes to neuroinflammation due to the increased levels of circulating free fatty acids and cytokines. It indicates a strict interplay between peripheral and central counterparts in the pathogenic mechanisms of obesity-related mood disorders. In this context, the impairment of internal hypothalamic circuitry runs in tandem with the alteration of other brain areas associated with emotional processing (i.e., hippocampus and amygdala). Palmitoylethanolamide (PEA), an endogenous lipid mediator belonging to the N-acylethanolamines family, has been extensively studied for its pleiotropic effects both at central and peripheral level. Our study aimed to elucidate PEA capability in limiting obesity-induced anxiety-like behavior and neuroinflammation-related features in an experimental model of HFD-fed obese mice. PEA treatment promoted an improvement in anxiety-like behavior of obese mice and the systemic inflammation, reducing serum pro-inflammatory mediators (i.e., TNF-α, IL-1ß, MCP-1, LPS). In the amygdala, PEA increased dopamine turnover, as well as GABA levels. PEA also counteracted the overactivation of HPA axis, reducing the expression of hypothalamic corticotropin-releasing hormone and its type 1 receptor. Moreover, PEA attenuated the immunoreactivity of Iba-1 and GFAP and reduced pro-inflammatory pathways and cytokine production in both the hypothalamus and hippocampus. This finding, together with the reduced transcription of mast cell markers (chymase 1 and tryptase ß2) in the hippocampus, indicated the weakening of immune cell activation underlying the neuroprotective effect of PEA. Obesity-driven neuroinflammation was also associated with the disruption of blood-brain barrier (BBB) in the hippocampus. PEA limited the albumin extravasation and restored tight junction transcription modified by HFD. To gain mechanistic insight, we designed an in vitro model of metabolic injury using human neuroblastoma SH-SY5Y cells insulted by a mix of glucosamine and glucose. Here, PEA directly counteracted inflammation and mitochondrial dysfunction in a PPAR-α-dependent manner since the pharmacological blockade of the receptor reverted its effects. Our results strengthen the therapeutic potential of PEA in obesity-related neuropsychiatric comorbidities, controlling neuroinflammation, BBB disruption, and neurotransmitter imbalance involved in behavioral dysfunctions.


Assuntos
Sistema Hipotálamo-Hipofisário , Doenças Neuroinflamatórias , Amidas , Animais , Ansiedade/tratamento farmacológico , Dieta Hiperlipídica , Etanolaminas , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Obesidade/metabolismo , Ácidos Palmíticos , Sistema Hipófise-Suprarrenal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...