Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 329: 239-53, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27185484

RESUMO

Developmental exposure to arylhydrocarbon receptor (AhR) ligands abolishes sex differences in a wide range of neural structures and functions. A well-studied example is the anteroventral periventricular nucleus (AVPV), a structure that controls sex-specific luteinizing hormone (LH) release. In the male, testosterone (T) secreted by the developing testes defeminizes LH release mechanisms; conversely, perinatal AhR activation by 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) blocks defeminization. To better understand developmental mechanisms altered by TCDD exposure, we first verified that neonatal TCDD exposure in male rats prevented the loss of AVPV GABA/glutamate neurons that are critical for female-typical LH surge release. We then used whole genome arrays and quantitative real-time polymerase chain reaction (QPCR) to compare AVPV transcriptomes of males treated neonatally with TCDD or vehicle. Our bioinformatics analyses showed that TCDD enriched gene sets important for neuron development, synaptic transmission, ion homeostasis, and cholesterol biosynthesis. In addition, upstream regulatory analysis suggests that both estrogen receptors (ER) and androgen receptors (AR) regulate genes targeted by TCDD. Of the 23 mRNAs found to be changed by TCDD at least 2-fold (p<0.05), most participate in the functions identified in our bioinformatics analyses. Several, including matrix metallopeptidase 9 and SRY-box 11 (Sox11), are known targets of E2. CUG triplet repeat, RNA binding protein 2 (cugbp2) is particularly interesting because it is sex-specific, oppositely regulated by estradiol (E2) and TCDD. Moreover, it regulates the post-transcriptional processing of molecules previously linked to sexual differentiation of the brain. These findings provide new insights into how TCDD may interfere with defeminization of LH release patterns.


Assuntos
Hipotálamo Anterior/efeitos dos fármacos , Hormônio Luteinizante/metabolismo , Neurônios/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Caracteres Sexuais , Transcriptoma/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Contagem de Células , Ácido Glutâmico/metabolismo , Hipotálamo Anterior/crescimento & desenvolvimento , Hipotálamo Anterior/metabolismo , Masculino , Neurônios/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
3.
Front Neurosci ; 7: 164, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24065878

RESUMO

Progesterone (P4) regulates a wide range of neural functions and likely acts through multiple receptors. Over the past 30 years, most studies investigating neural effects of P4 focused on genomic and non-genomic actions of the classical progestin receptor (PGR). More recently the focus has widened to include two groups of non-classical P4 signaling molecules. Members of the Class II progestin and adipoQ receptor (PAQR) family are called membrane progestin receptors (mPRs) and include: mPRα (PAQR7), mPRß (PAQR8), mPRγ (PAQR5), mPRδ (PAQR6), and mPRε (PAQR9). Members of the b5-like heme/steroid-binding protein family include progesterone receptor membrane component 1 (PGRMC1), PGRMC2, neudesin, and neuferricin. Results of our recent mapping studies show that members of the PGRMC1/S2R family, but not mPRs, are quite abundant in forebrain structures important for neuroendocrine regulation and other non-genomic effects of P4. Herein we describe the structures, neuroanatomical localization, and signaling mechanisms of these molecules. We also discuss possible roles for Pgrmc1/S2R in gonadotropin release, feminine sexual behaviors, fluid balance and neuroprotection, as well as catamenial epilepsy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...