RESUMO
Acylhydrazone (AH) derivatives represent a novel category of anti-fungal medications that exhibit potent activity against Sporothrix sp., both in vitro and in a murine model of sporotrichosis. In this study, we demonstrated the anti-fungal efficacy of the AH derivative D13 [4-bromo-N'-(3,5-dibromo-2-hydroxybenzylidene)-benzohydrazide] against both planktonic cells and biofilms formed by Sporothrix brasiliensis. In a clinical study, the effect of D13 was then tested in combination with itraconazole (ITC), with or without potassium iodide, in 10 cats with sporotrichosis refractory to the treatment of standard of care with ITC. Improvement or total clinical cure was achieved in five cases after 12 weeks of treatment. Minimal abnormal laboratory findings, e.g., elevation of alanine aminotransferase, were observed in four cats during the combination treatment and returned to normal level within a week after the treatment was ended. Although highly encouraging, a larger and randomized controlled study is required to evaluate the effectiveness and the safety of this new and exciting drug combination using ITC and D13 for the treatment of feline sporotrichosis. IMPORTANCE: This paper reports the first veterinary clinical study of an acylhydrazone anti-fungal (D13) combined with itraconazole against a dimorphic fungal infection, sporotrichosis, which is highly endemic in South America in animals and humans. Overall, the results show that the combination treatment was efficacious in ~50% of the infected animals. In addition, D13 was well tolerated during the course of the study. Thus, these results warrant the continuation of the research and development of this new class of anti-fungals.
Assuntos
Antifúngicos , Doenças do Gato , Quimioterapia Combinada , Itraconazol , Sporothrix , Esporotricose , Gatos , Animais , Itraconazol/uso terapêutico , Itraconazol/administração & dosagem , Itraconazol/farmacologia , Esporotricose/tratamento farmacológico , Esporotricose/veterinária , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/administração & dosagem , Doenças do Gato/tratamento farmacológico , Doenças do Gato/microbiologia , Sporothrix/efeitos dos fármacos , Hidrazonas/uso terapêutico , Hidrazonas/farmacologia , Feminino , Masculino , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos , Resultado do TratamentoRESUMO
Thermotolerance is a remarkable virulence attribute of Aspergillus fumigatus, but the consequences of heat shock (HS) to the cell membrane of this fungus are unknown, although this structure is one of the first to detect changes in ambient temperature that imposes on the cell a prompt adaptative response. Under high-temperature stress, fungi trigger the HS response controlled by heat shock transcription factors, such as HsfA, which regulates the expression of heat shock proteins. In yeast, smaller amounts of phospholipids with unsaturated fatty acid (FA) chains are synthesized in response to HS, directly affecting plasma membrane composition. The addition of double bonds in saturated FA is catalyzed by Δ9-fatty acid desaturases, whose expression is temperature-modulated. However, the relationship between HS and saturated/unsaturated FA balance in membrane lipids of A. fumigatus in response to HS has not been investigated. Here, we found that HsfA responds to plasma membrane stress and has a role in sphingolipid and phospholipid unsaturated biosynthesis. In addition, we studied the A. fumigatus Δ9-fatty acid desaturase sdeA and discovered that this gene is essential and required for unsaturated FA biosynthesis, although it did not directly affect the total levels of phospholipids and sphingolipids. sdeA depletion significantly sensitizes mature A. fumigatus biofilms to caspofungin. Also, we demonstrate that hsfA controls sdeA expression, while SdeA and Hsp90 physically interact. Our results suggest that HsfA is required for the adaptation of the fungal plasma membrane to HS and point out a sharp relationship between thermotolerance and FA metabolism in A. fumigatus. IMPORTANCE Aspergillus fumigatus causes invasive pulmonary aspergillosis, a life-threatening infection accounting for high mortality rates in immunocompromised patients. The ability of this organism to grow at elevated temperatures is long recognized as an essential attribute for this mold to cause disease. A. fumigatus responds to heat stress by activating heat shock transcription factors and chaperones to orchestrate cellular responses that protect the fungus against damage caused by heat. Concomitantly, the cell membrane must adapt to heat and maintain physical and chemical properties such as the balance between saturated/unsaturated fatty acids. However, how A. fumigatus connects these two physiological responses is unclear. Here, we explain that HsfA affects the synthesis of complex membrane lipids such as phospholipids and sphingolipids and controls the enzyme SdeA, which produces monounsaturated fatty acids, raw material for membrane lipids. These findings suggest that forced dysregulation of saturated/unsaturated fatty acid balance might represent novel strategies for antifungal therapy.
Assuntos
Aspergillus fumigatus , Termotolerância , Humanos , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Termotolerância/fisiologia , Fatores de Transcrição de Choque Térmico/metabolismo , Ácidos Graxos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfolipídeos/metabolismo , Lipídeos de Membrana/metabolismo , Esfingolipídeos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismoRESUMO
In this study, we investigated the influence of fungal extracellular vesicles (EVs) during biofilm formation and morphogenesis in Candida albicans. Using crystal violet staining and scanning electron microscopy (SEM), we demonstrated that C. albicans EVs inhibited biofilm formation in vitro. By time-lapse microscopy and SEM, we showed that C. albicans EV treatment stopped filamentation and promoted pseudohyphae formation with multiple budding sites. The ability of C. albicans EVs to regulate dimorphism was further compared to EVs isolated from different C. albicans strains, Saccharomyces cerevisiae, and Histoplasma capsulatum. C. albicans EVs from distinct strains inhibited yeast-to-hyphae differentiation with morphological changes occurring in less than 4 h. EVs from S. cerevisiae and H. capsulatum modestly reduced morphogenesis, and the effect was evident after 24 h of incubation. The inhibitory activity of C. albicans EVs on phase transition was promoted by a combination of lipid compounds, which were identified by gas chromatography-tandem mass spectrometry analysis as sesquiterpenes, diterpenes, and fatty acids. Remarkably, C. albicans EVs were also able to reverse filamentation. Finally, C. albicans cells treated with C. albicans EVs for 24 h lost their capacity to penetrate agar and were avirulent when inoculated into Galleria mellonella. Our results indicate that fungal EVs can regulate yeast-to-hypha differentiation, thereby inhibiting biofilm formation and attenuating virulence. IMPORTANCE The ability to undergo morphological changes during adaptation to distinct environments is exploited by Candida albicans and has a direct impact on biofilm formation and virulence. Morphogenesis is controlled by a diversity of stimuli, including osmotic stress, pH, starvation, presence of serum, and microbial components, among others. Apart from external inducers, C. albicans also produces autoregulatory substances. Farnesol and tyrosol are examples of quorum-sensing molecules (QSM) released by C. albicans to regulate yeast-to-hypha conversion. Here, we demonstrate that fungal EVs are messengers impacting biofilm formation, morphogenesis, and virulence in C. albicans. The major players exported in C. albicans EVs included sesquiterpenes, diterpenes, and fatty acids. The understanding of how C. albicans cells communicate to regulate physiology and pathogenesis can lead to novel therapeutic tools to combat candidiasis.
Assuntos
Candida albicans , Vesículas Extracelulares , Biofilmes , Ácidos Graxos/farmacologia , Hifas , Saccharomyces cerevisiaeRESUMO
Classic galactosemia is an inborn error of metabolism caused by deleterious mutations on the GALT gene, which encodes the Leloir pathway enzyme galactose-1-phosphate uridyltransferase. Previous studies have shown that the endoplasmic reticulum unfolded protein response (UPR) is relevant to galactosemia, but the molecular mechanism behind the endoplasmic reticulum stress that triggers this response remains elusive. In the present work, we show that the activation of the UPR in yeast models of galactosemia does not depend on the binding of unfolded proteins to the ER stress sensor protein Ire1p since the protein domain responsible for unfolded protein binding to Ire1p is not necessary for UPR activation. Interestingly, myriocin - an inhibitor of the de novo sphingolipid synthesis pathway - inhibits UPR activation and causes galactose hypersensitivity in these models, indicating that myriocin-mediated sphingolipid depletion impairs yeast adaptation to galactose toxicity. Supporting the interpretation that the effects observed after myriocin treatment were due to a reduction in sphingolipid levels, the addition of phytosphingosine to the culture medium reverses all myriocin effects tested. Surprisingly, constitutively active UPR signaling did not prevent myriocin-induced galactose hypersensitivity suggesting multiple roles for sphingolipids in the adaptation of yeast cells to galactose toxicity. Therefore, we conclude that sphingolipid homeostasis has an important role in UPR activation and cellular adaptation in yeast models of galactosemia, highlighting the possible role of lipid metabolism in the pathophysiology of this disease.
Assuntos
Galactosemias , Galactose/metabolismo , Galactose/farmacologia , Galactosemias/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismoRESUMO
Aspergillus fumigatus is an important fungal pathogen and the main etiological agent of aspergillosis, a disease characterized by a noninvasive process that can evolve to a more severe clinical manifestation, called invasive pulmonary aspergillosis (IPA), in immunocompromised patients. The antifungal arsenal to threat aspergillosis is very restricted. Azoles are the main therapeutic approach to control IPA, but the emergence of azole-resistant A. fumigatus isolates has significantly increased over recent decades. Therefore, new strategies are necessary to combat aspergillosis, and drug repurposing has emerged as an efficient and alternative approach for identifying new antifungal drugs. Here, we used a screening approach to analyze A. fumigatus in vitro susceptibility to 1,127 compounds. A. fumigatus was susceptible to 10 compounds, including miltefosine, a drug that displayed fungicidal activity against A. fumigatus. By screening an A. fumigatus transcription factor null library, we identified a single mutant, which has the smiA (sensitive to miltefosine) gene deleted, conferring a phenotype of susceptibility to miltefosine. The transcriptional profiling (RNA-seq) of the wild-type and ΔsmiA strains and chromatin immunoprecipitation coupled to next-generation sequencing (ChIP-Seq) of an SmiA-tagged strain exposed to miltefosine revealed genes of the sphingolipid pathway that are directly or indirectly regulated by SmiA. Sphingolipid analysis demonstrated that the mutant has overall decreased levels of sphingolipids when growing in the presence of miltefosine. The identification of SmiA represents the first genetic element described and characterized that plays a direct role in miltefosine response in fungi. IMPORTANCE The filamentous fungus Aspergillus fumigatus causes a group of diseases named aspergillosis, and their development occurs after the inhalation of conidia dispersed in the environment. Very few classes of antifungal drugs are available for aspergillosis treatment, e.g., azoles, but the emergence of global resistance to azoles in A. fumigatus clinical isolates has increased over recent decades. Repositioning or repurposing drugs already available on the market is an interesting and faster opportunity for the identification of novel antifungal agents. By using a repurposing strategy, we identified 10 different compounds that impact A. fumigatus survival. One of these compounds, miltefosine, demonstrated fungicidal activity against A. fumigatus. The mechanism of action of miltefosine is unknown, and, aiming to get more insights about it, we identified a transcription factor, SmiA (sensitive to miltefosine), important for miltefosine resistance. Our results suggest that miltefosine displays antifungal activity against A. fumigatus, interfering in sphingolipid biosynthesis.
Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Ensaios de Triagem em Larga Escala , Fosforilcolina/análogos & derivados , Bibliotecas de Moléculas Pequenas/farmacologia , Esfingolipídeos/metabolismo , Animais , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidade , Farmacorresistência Fúngica , Larva/efeitos dos fármacos , Larva/microbiologia , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Mariposas/microbiologia , Fenótipo , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , VirulênciaRESUMO
SBF (Swi4/Swi6 Binding Factor) complex is a crucial regulator of G1/S transition in Saccharomyces cerevisiae. Here, we show that SBF complex is required for myriocin resistance, an inhibitor of sphingolipid synthesis. This phenotype was not shared with MBF complex mutants nor with deletion of the Swi4p downstream targets, CLN1/CLN2. Based on data mining results, we selected putative Swi4p targets related to sphingolipid metabolism and studied their gene transcription as well as metabolite levels during progression of the cell cycle. Genes which encode key enzymes for the synthesis of long chain bases (LCBs) and ceramides were periodically transcribed during the mitotic cell cycle, having a peak at G1/S, and required SWI4 for full transcription at this stage. In addition, HPLC-MS/MS data indicated that swi4Δ cells have decreased levels of sphingolipids during progression of the cell cycle, particularly, dihydrosphingosine (DHS), C24-phytoceramides and C24-inositolphosphoryl ceramide (IPC) while it had increased levels of mannosylinositol phosphorylceramide (MIPC). Furthermore, we demonstrated that both inhibition of de novo sphingolipid synthesis by myriocin or SWI4 deletion caused partial arrest at the G2/M phase. Importantly, our lipidomic data demonstrated that the sphingolipid profile of WT cells treated with myriocin resembled that of swi4Δ cells, with lower levels of DHS, IPC and higher levels of MIPC. Taken together, these results show that SBF complex plays an essential role in the regulation of sphingolipid homeostasis, which reflects in the correct progression through the G2/M phase of the cell cycle.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Fase G1/genética , Fase S/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/biossíntese , Fatores de Transcrição/metabolismo , Regulação Fúngica da Expressão Gênica , Mitose/genética , Saccharomyces cerevisiae/genéticaRESUMO
The deleterious effects of human-induced climate change have long been predicted. However, the imminent emergence and spread of new diseases, including fungal infections through the rise of thermotolerant strains, is still neglected, despite being a potential consequence of global warming. Thermotolerance is a remarkable virulence attribute of the mold Aspergillus fumigatus. Under high-temperature stress, opportunistic fungal pathogens deploy an adaptive mechanism known as heat shock (HS) response controlled by heat shock transcription factors (HSFs). In eukaryotes, HSFs regulate the expression of several heat shock proteins (HSPs), such as the chaperone Hsp90, which is part of the cellular program for heat adaptation and a direct target of HSFs. We recently observed that the perturbation in cell wall integrity (CWI) causes concomitant susceptibility to elevated temperatures in A. fumigatus, although the mechanisms underpinning the HS response and CWI cross talking are not elucidated. Here, we aim at further deciphering the interplay between HS and CWI. Our results show that cell wall ultrastructure is severely modified when A. fumigatus is exposed to HS. We identify the transcription factor HsfA as essential for A. fumigatus viability, thermotolerance, and CWI. Indeed, HS and cell wall stress trigger the coordinated expression of both hsfA and hsp90. Furthermore, the CWI signaling pathway components PkcA and MpkA were shown to be important for HsfA and Hsp90 expression in the A. fumigatus biofilms. Lastly, RNA-sequencing confirmed that hsfA regulates the expression of genes related to the HS response, cell wall biosynthesis and remodeling, and lipid homeostasis. Our studies collectively demonstrate the connection between the HS and the CWI pathway, with HsfA playing a crucial role in this cross-pathway regulation, reinforcing the importance of the cell wall in A. fumigatus thermophily.
RESUMO
Sporotrichosis is an emerging mycosis caused by members of the genus Sporothrix The disease affects humans and animals, particularly cats, which plays an important role in the zoonotic transmission. Feline sporotrichosis treatment options include itraconazole (ITC), potassium iodide and amphotericin B, drugs usually associated with deleterious adverse reactions and refractoriness in cats, especially when using ITC. Thus, affordable, non-toxic and clinically effective anti-Sporothrix agents are needed. Recently, acylhydrazones (AH), molecules targeting vesicular transport and cell cycle progression, exhibited a potent antifungal activity against several fungal species and displayed low toxicity when compared to the current drugs. In this work, the AH derivatives D13 and SB-AF-1002 were tested against Sporothrix schenckii and Sporothrix brasiliensis Minimal inhibitory concentrations of 0.12 - 1 µg/mL were observed for both species in vitro D13 and SB-AF-1002 showed an additive effect with itraconazole. Treatment with D13 promoted yeast disruption with release of intracellular components, as confirmed by transmission electron microscopy of S. brasiliensis exposed to the AH derivatives. AH-treated cells displayed thickening of the cell wall, discontinuity of the cell membrane and an intense cytoplasmic degeneration. In a murine model of sporotrichosis, treatment with AH derivatives was more efficient than ITC, the drug of choice for sporotrichosis. The results of the preliminary clinical study in cats indicate that D13 is safe and has potential to become a therapeutic option for sporotrichosis when associated to ITC. Our results expand the antifungal broadness of AH derivatives and suggest that these drugs could be exploited to combat sporotrichosis.
RESUMO
All living beings have an optimal temperature for growth and survival. With the advancement of global warming, the search for understanding adaptive processes to climate changes has gained prominence. In this context, all living beings monitor the external temperature and develop adaptive responses to thermal variations. These responses ultimately change the functioning of the cell and affect the most diverse structures and processes. One of the first structures to detect thermal variations is the plasma membrane, whose constitution allows triggering of intracellular signals that assist in the response to temperature stress. Although studies on this topic have been conducted, the underlying mechanisms of recognizing thermal changes and modifying cellular functioning to adapt to this condition are not fully understood. Recently, many reports have indicated the participation of sphingolipids (SLs), major components of the plasma membrane, in the regulation of the thermal stress response. SLs can structurally reinforce the membrane or/and send signals intracellularly to control numerous cellular processes, such as apoptosis, cytoskeleton polarization, cell cycle arresting and fungal virulence. In this review, we discuss how SLs synthesis changes during both heat and cold stresses, focusing on fungi, plants, animals and human cells. The role of lysophospholipids is also discussed.
Assuntos
Adaptação Fisiológica/fisiologia , Eucariotos/fisiologia , Esfingolipídeos/fisiologia , Animais , Resposta ao Choque Frio/fisiologia , Fungos/fisiologia , Resposta ao Choque Térmico/fisiologia , Humanos , Fenômenos Fisiológicos Vegetais , Esfingolipídeos/metabolismo , TemperaturaRESUMO
The human diseases caused by the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii are associated with high indices of mortality and toxic and/or cost-prohibitive therapeutic protocols. The need for affordable antifungals to combat cryptococcal disease is unquestionable. Previous studies suggested benzimidazoles as promising anticryptococcal agents combining low cost and high antifungal efficacy, but their therapeutic potential has not been demonstrated so far. In this study, we investigated the antifungal potential of fenbendazole, the most effective anticryptococcal benzimidazole. Fenbendazole was inhibitory against 17 different isolates of C. neoformans and C. gattii at a low concentration. The mechanism of anticryptococcal activity of fenbendazole involved microtubule disorganization, as previously described for human parasites. In combination with fenbendazole, the concentrations of the standard antifungal amphotericin B required to control cryptococcal growth were lower than those required when this antifungal was used alone. Fenbendazole was not toxic to mammalian cells. During macrophage infection, the anticryptococcal effects of fenbendazole included inhibition of intracellular proliferation rates and reduced phagocytic escape through vomocytosis. Fenbendazole deeply affected the cryptococcal capsule. In a mouse model of cryptococcosis, the efficacy of fenbendazole to control animal mortality was similar to that observed for amphotericin B. These results indicate that fenbendazole is a promising candidate for the future development of an efficient and affordable therapeutic tool to combat cryptococcosis.
Assuntos
Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Animais , Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Fenbendazol/farmacologia , VirulênciaRESUMO
Aim: Glycosphingolipids are conserved lipids displaying a variety of functions in fungal cells, such as determination of cell polarity and virulence. They have been considered as potent targets for new antifungal drugs. The present work aimed to test two inhibitors, myriocin and DL-threo-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol, in Scedosporium boydii, a pathogenic fungus which causes a wide range of disease. Materials & methods: Mass spectrometry, microscopy and cell biology approaches showed that treatment with both inhibitors led to defects in fungal growth and membrane integrity, and caused an increased susceptibility to the current antifungal agents. Conclusion: These data demonstrate the antifungal potential of drugs inhibiting sphingolipid biosynthesis, as well as the usefulness of sphingolipids as promising targets for the development of new therapeutic options.
Assuntos
Biofilmes/crescimento & desenvolvimento , Scedosporium/metabolismo , Esfingolipídeos/biossíntese , Membrana Celular/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Meperidina/análogos & derivados , Meperidina/metabolismoRESUMO
Cryptococcus neoformans is an encapsulated fungal pathogen that causes meningoencephalitis. There are no prophylactic tools for cryptococcosis. Previously, our group showed that a C. neoformans mutant lacking the gene encoding sterylglucosidase (Δsgl1) induced protection in both immunocompetent and immunocompromised murine models of cryptococcosis. Since sterylglucosidase catalyzes degradation of sterylglucosides (SGs), accumulation of this glycolipid could be responsible for protective immunity. In this study, we analyzed whether the activity of SGs is sufficient for the protective effect induced by the Δsgl1 strain. We observed that the accumulation of SGs impacted several properties of the main polysaccharide that composes the fungal capsule, glucuronoxylomannan (GXM). We therefore used genetic manipulation to delete the SGL1 gene in the acapsular mutant Δcap59 to generate a double mutant (strain Δcap59/Δsgl1) that was shown to be nonpathogenic and cleared from the lung of mice within 7 days post-intranasal infection. The inflammatory immune response triggered by the Δcap59/Δsgl1 mutant in the lung differed from the response seen with the other strains. The double mutant did not induce protection in a vaccination model, suggesting that SG-related protection requires the main capsular polysaccharide. Finally, GXM-containing extracellular vesicles (EVs) enriched in SGs delayed the acute lethality of Galleria mellonella against C. neoformans infection. These studies highlighted a key role for GXM and SGs in inducing protection against a secondary cryptococcal infection, and, since EVs notoriously contain GXM, these results suggest the potential use of Δsgl1 EVs as a vaccination strategy for cryptococcosis.IMPORTANCE The number of deaths from cryptococcal meningitis is around 180,000 per year. The disease is the second leading cause of mortality among individuals with AIDS. Antifungal treatment is costly and associated with adverse effects and resistance, evidencing the urgency of development of both therapeutic and prophylactic tools. Here we demonstrate the key roles of polysaccharide- and glycolipid-containing structures in a vaccination model to prevent cryptococcosis.
Assuntos
Criptococose/prevenção & controle , Cryptococcus neoformans/imunologia , Vacinas Fúngicas/imunologia , Glicolipídeos/imunologia , Polissacarídeos/imunologia , Animais , Cryptococcus neoformans/genética , Modelos Animais de Doenças , Vesículas Extracelulares/imunologia , Vacinas Fúngicas/administração & dosagem , Deleção de Genes , Glicolipídeos/administração & dosagem , Lepidópteros , Polissacarídeos/administração & dosagem , Análise de SobrevidaRESUMO
Flippases are responsible for the asymmetric distribution of phospholipids in biological membranes. In the encapsulated fungal pathogen Cryptococcus neoformans, the putative flippase Apt1 is an important regulator of polysaccharide secretion and pathogenesis in mice by unknown mechanisms. In this study, we analyzed the role of C. neoformans Apt1 in intracellular membrane architecture and synthesis of polysaccharide and lipids. Analysis of wild type (WT), apt1Δ (mutant) and apt1Δ::APT1 (complemented) strains by transmission electron microscopy revealed that deletion of APT1 resulted in the formation of irregular vacuoles. Disorganization of vacuolar membranes in apt1Δ cells was accompanied by a significant increase in the amounts of intra-vacuolar and pigment-containing vesicles. Quantitative immunogold labeling of C. neoformans cells with a monoclonal antibody raised to a major capsular component suggested impaired polysaccharide synthesis. APT1 deletion also affected synthesis of phosphatidylserine, phosphatidylethanolamine, inositolphosphoryl ceramide, glucosylceramide and ergosterylglycoside. These results reveal novel functions of Apt1 and are in agreement with the notion that this putative flippase plays an important role in the physiology of C. neoformans.
Assuntos
Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Membranas Intracelulares/metabolismo , Lipídeos/biossíntese , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Membranas Intracelulares/química , Lipídeos/genética , Camundongos , Polissacarídeos/biossíntese , VirulênciaRESUMO
Sphingolipids (SL) are complex lipids and components of the plasma membrane which are involved in numerous cellular processes, as well as important for virulence of different fungal pathogens. In yeast, SL biosynthesis is regulated by the "AGC kinases" Ypk1 and Ypk2, which also seem to connect the SL biosynthesis with the cell wall integrity (CWI) and the High Osmolarity Glycerol (HOG) pathways. Here, we investigate the role of ypkA Y PK1 in SL biosynthesis and its relationship with the CWI and the HOG pathways in the opportunistic human pathogen Aspergillus fumigatus. We found that ypkA is important for fungal viability, since the ΔypkA strain presented a drastically sick phenotype and complete absence of conidiation. We observed that under repressive condition, the conditional mutant niiA::ypkA exhibited vegetative growth defects, impaired germination and thermosensitivity. In addition, the ypkA loss of function caused a decrease in glycosphingolipid (GSL) levels, especially the metabolic intermediates belonging to the neutral GSL branch including dihydroceramide (DHC), ceramide (Cer), and glucosylceramide (GlcCer), but interestingly a small increase in ergosterol content. Genetic analyzes showed that ypkA genetically interacts with the MAP kinases of CWI and HOG pathways, mpkA and sakA, respectively, while only SakA physically interacts with YpkA. Our results suggest that YpkA is important for fungal survival through the regulation of GSL biosynthesis and cross talks with A. fumigatus MAP kinase pathways.
RESUMO
Cryptococcus neoformans is the most lethal pathogen of the central nervous system. The gold standard treatment of cryptococcosis, a combination of amphotericin B with 5-fluorocytosine, involves broad toxicity, high costs, low efficacy, and limited worldwide availability. Although the need for new antifungals is clear, drug research and development (R&D) is costly and time-consuming. Thus, drug repurposing is an alternative to R&D and to the currently available tools for treating fungal diseases. Here we screened a collection of compounds approved for use in humans seeking for those with anti-cryptococcal activity. We found that benzimidazoles consist of a broad class of chemicals inhibiting C. neoformans growth. Mebendazole and fenbendazole were the most efficient antifungals showing in vitro fungicidal activity. Since previous studies showed that mebendazole reaches the brain in biologically active concentrations, this compound was selected for further studies. Mebendazole showed antifungal activity against phagocytized C. neoformans, affected cryptococcal biofilms profoundly and caused marked morphological alterations in C. neoformans, including reduction of capsular dimensions. Amphotericin B and mebendazole had additive anti-cryptococcal effects. Mebendazole was also active against the C. neoformans sibling species, C. gattii. To further characterize the effects of the drug a random C. gattii mutant library was screened and indicated that the antifungal activity of mebendazole requires previously unknown cryptococcal targets. Our results indicate that mebendazole is as a promising prototype for the future development of anti-cryptococcal drugs.
RESUMO
The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways.
Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/metabolismo , Feminino , Proteínas Fúngicas/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos BALB C , Pressão Osmótica/fisiologia , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Esporos Fúngicos/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , VirulênciaRESUMO
Invasive fungal infections have significantly increased in the last few decades. Three classes of drugs are commonly used to treat these infections: polyenes, azoles and echinocandins. Unfortunately each of these drugs has drawbacks; polyenes are toxic, resistance against azoles is emerging and echinocandins have narrow spectrum of activity. Thus, the development of new antifungals is urgently needed. In this context, fungal sphingolipids have emerged as a potential target for new antifungals, because their biosynthesis in fungi is structurally different than in mammals. Besides, some fungal sphingolipids play an important role in the regulation of virulence in a variety of fungi. This review aims to highlight the diverse strategies that could be used to block the synthesis or/and function of fungal sphingolipids.
Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Fungos/metabolismo , Micoses/tratamento farmacológico , Micoses/microbiologia , Esfingolipídeos/antagonistas & inibidores , Antifúngicos/química , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Esfingolipídeos/biossíntese , Esfingolipídeos/metabolismo , Virulência/efeitos dos fármacosRESUMO
Fungal infections are emerging as a major problem in part due to high mortality associated with systemic infections, especially in the case of immunocompromised patients. With the development of new treatments for diseases such as cancer and the acquired immune deficiency syndrome pandemic, the number of immunosuppressed patients has increased and, as a consequence, also the number of invasive fungal infections has increased. Several studies have proposed new strategies for the development of effective fungal vaccines. In addition, better understanding of how the immune system works against fungal pathogens has improved the further development of these new vaccination strategies. As a result, some fungal vaccines have advanced through clinical trials. However, there are still many challenges that prevent the clinical development of fungal vaccines that can efficiently immunise subjects at risk of developing invasive fungal infections. In this review, we will discuss these new vaccination strategies and the challenges that they present. In the future with proper investments, fungal vaccines may soon become a reality.
Assuntos
Humanos , Vacinas Fúngicas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Hospedeiro Imunocomprometido/imunologia , Micoses/prevenção & controle , Vacinação/métodos , Imunidade Adaptativa/fisiologia , Ensaios Clínicos como Assunto , Imunidade Inata/fisiologia , Tecnologia Farmacêutica , Vacinação/tendênciasRESUMO
Fungal infections are emerging as a major problem in part due to high mortality associated with systemic infections, especially in the case of immunocompromised patients. With the development of new treatments for diseases such as cancer and the acquired immune deficiency syndrome pandemic, the number of immunosuppressed patients has increased and, as a consequence, also the number of invasive fungal infections has increased. Several studies have proposed new strategies for the development of effective fungal vaccines. In addition, better understanding of how the immune system works against fungal pathogens has improved the further development of these new vaccination strategies. As a result, some fungal vaccines have advanced through clinical trials. However, there are still many challenges that prevent the clinical development of fungal vaccines that can efficiently immunise subjects at risk of developing invasive fungal infections. In this review, we will discuss these new vaccination strategies and the challenges that they present. In the future with proper investments, fungal vaccines may soon become a reality.