Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37629862

RESUMO

The present work reports the synthesis and the physicochemical characterization of biochar from the organic wastes of nopal (Opuntia Leucotricha), coffee grounds (Coffea arabica) and Ataulfo mango seeds (Mangifera indica) as alternative electrocatalyst supports to Vulcan XC-72 carbon black. The biochars were prepared using pyrolysis from organic wastes collected at three temperatures, 600, 750 and 900 °C, under two atmospheres, N2 and H2. The synthesized biochars were characterized using Raman spectroscopy and scanning electron microscopy (SEM) to obtain insights into their chemical structure and morphological nature, respectively, as a function of temperature and pyrolysis atmosphere. A N2 adsorption/desorption technique, two-point conductivity measurements and cyclic voltammetry (CV) were conducted to evaluate the specific surface area (SSA), electrical conductivity and double-layer capacitance, respectively, of all the biochars to estimate their physical properties as a possible alternative carbon support. The results indicated that the mango biochar demonstrated the highest properties among all the biochars, such as an electrical conductivity of 8.3 S/cm-1 at 900 °C in N2, a specific surface area of 829 m2/g at 600 °C in H2 and a capacitance of ~300 mF/g at 900 °C in N2. The nopal and coffee biochars exhibited excellent specific surface areas, up to 767 m2/g at 600 °C in N2 and 699 m2/g at 750 °C in H2, respectively; nonetheless, their electrical conductivity and capacitance were limited. Therefore, the mango biochar at 900 °C in N2 was considered a suitable alternative carbon material for electrocatalyst support. Additionally, it was possible to determine that the electrical conductivity and capacitance increased as a function of the pyrolysis temperature, while the specific surface area decreased for some biochars as the pyrolysis temperature increased. Overall, it is possible to conclude that heat treatment at a high temperature of 900 °C enhanced the biochar properties toward electrocatalyst support applications.

2.
Heliyon ; 9(7): e17971, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449122

RESUMO

Using the SILAR method Zinc sulfide coatings were deposited on glass slices. The physical properties and the chemical mechanism throughout the variation in concentration of tri-sodium citrate (TSC) as a chelating agent in the synthesis of thin films were investigated. Results shows that ZnS thin films exhibit an average transmittance of 16% in visible light spectra region and a zinc blende structure. The ZnS films synthesized using TSC as a complexing agent, present a smaller average particle size, an average transmittance of 85%, and an adsorption edge at 300-340 nm. Based on our experimental data and analysis, we conclude that the contribution of the oxychloride species, a subproduct in the chemical deposition, is suggested to be related as an impurity level former in the synthesis of ZnS thin films. TSC as a complexing agent in the SILAR technique is a non-toxic option to reduce the generation of the oxychloride species and synthesize a wide band gap semiconductor. Moreover, the use of complexing agents could be extended to other types of semiconductors deposited by SILAR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...