Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 97, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879502

RESUMO

Wasteosomes (or corpora amylacea) are polyglucosan bodies that appear in the human brain with aging and in some neurodegenerative diseases, and have been suggested to have a potential role in a nervous system cleaning mechanism. Despite previous studies in several neurodegenerative disorders, their status in frontotemporal lobar degeneration (FTLD) remains unexplored. Our study aims to characterize wasteosomes in the three primary FTLD proteinopathies, assessing frequency, distribution, protein detection, and association with aging or disease duration. Wasteosome scores were obtained in various brain regions from 124 post-mortem diagnosed sporadic FTLD patients, including 75 participants with tau (FTLD-tau), 42 with TAR DNA-binding protein 43 (FTLD-TDP), and 7 with Fused in Sarcoma (FTLD-FUS) proteinopathies, along with 29 control subjects. The wasteosome amount in each brain region for the different FLTD patients was assessed with a permutation test with age at death and sex as covariables, and multiple regressions explored associations with age at death and disease duration. Double immunofluorescence studies examined altered proteins linked to FTLD in wasteosomes. FTLD patients showed a higher accumulation of wasteosomes than control subjects, especially those with FTLD-FUS. Unlike FTLD-TDP and control subjects, wasteosome accumulation did not increase with age in FTLD-tau and FTLD-FUS. Cases with shorter disease duration in FTLD-tau and FTLD-FUS seemed to exhibit higher wasteosome quantities, whereas FTLD-TDP appeared to show an increase with disease progression. Immunofluorescence studies revealed the presence of tau and phosphorylated-TDP-43 in the periphery of isolated wasteosomes in some patients with FTLD-tau and FTLD-TDP, respectively. Central inclusions of FUS were observed in a higher number of wasteosomes in FTLD-FUS patients. These findings suggest a role of wasteosomes in FTLD, especially in the more aggressive forms of FLTD-FUS. Detecting these proteins, particularly FUS, in wasteosomes from cerebrospinal fluid could be a potential biomarker for FTLD.


Assuntos
Proteínas de Ligação a DNA , Degeneração Lobar Frontotemporal , Proteína FUS de Ligação a RNA , Proteínas tau , Humanos , Degeneração Lobar Frontotemporal/patologia , Degeneração Lobar Frontotemporal/metabolismo , Feminino , Masculino , Proteína FUS de Ligação a RNA/metabolismo , Idoso , Proteínas tau/metabolismo , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Proteínas de Ligação a DNA/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo
2.
Adv Sci (Weinh) ; : e2308689, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863325

RESUMO

Limb neuroprostheses aim to restore motor and sensory functions in amputated or severely nerve-injured patients. These devices use neural interfaces to record and stimulate nerve action potentials, creating a bidirectional connection with the nervous system. Most neural interfaces are based on standard metal microelectrodes. In this work, a new generation of neural interfaces which replaces metals with engineered graphene, called EGNITE, is tested. In vitro and in vivo experiments are conducted to assess EGNITE biocompatibility. In vitro tests show that EGNITE does not impact cell viability. In vivo, no significant functional decrease or harmful effects are observed. Furthermore, the foreign body reaction to the intraneural implant is similar compared to other materials previously used in neural interfaces. Regarding functionality, EGNITE devices are able to stimulate nerve fascicles, during two months of implant, producing selective muscle activation with about three times less current compared to larger microelectrodes of standard materials. CNAP elicited by electrical stimuli and ENG evoked by mechanical stimuli are recorded with high resolution but are more affected by decreased functionality over time. This work constitutes further proof that graphene-derived materials, and specifically EGNITE, is a promising conductive material of neural electrodes for advanced neuroprostheses.

3.
Sci Signal ; 17(822): eabq1007, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320000

RESUMO

Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gαq inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCß pathway. Mitoproteome analysis revealed that Gαq interacted with the Eutherian-specific mitochondrial protein armadillo repeat-containing X-linked protein 3 (Alex3) and the Miro1/Trak2 complex, which acts as an adaptor for motor proteins involved in mitochondrial trafficking along dendrites and axons. By generating a CNS-specific Alex3 knockout mouse line, we demonstrated that Alex3 was required for the effects of Gαq on mitochondrial trafficking and dendritic growth in neurons. Alex3-deficient mice had altered amounts of ER stress response proteins, increased neuronal death, motor neuron loss, and severe motor deficits. These data revealed a mammalian-specific Alex3/Gαq mitochondrial complex, which enables control of mitochondrial trafficking and neuronal death by GPCRs.


Assuntos
Axônios , Neurônios , Animais , Camundongos , Axônios/metabolismo , Mamíferos/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo
4.
Nat Nanotechnol ; 19(4): 514-523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212522

RESUMO

One of the critical factors determining the performance of neural interfaces is the electrode material used to establish electrical communication with the neural tissue, which needs to meet strict electrical, electrochemical, mechanical, biological and microfabrication compatibility requirements. This work presents a nanoporous graphene-based thin-film technology and its engineering to form flexible neural interfaces. The developed technology allows the fabrication of small microelectrodes (25 µm diameter) while achieving low impedance (∼25 kΩ) and high charge injection (3-5 mC cm-2). In vivo brain recording performance assessed in rodents reveals high-fidelity recordings (signal-to-noise ratio >10 dB for local field potentials), while stimulation performance assessed with an intrafascicular implant demonstrates low current thresholds (<100 µA) and high selectivity (>0.8) for activating subsets of axons within the rat sciatic nerve innervating tibialis anterior and plantar interosseous muscles. Furthermore, the tissue biocompatibility of the devices was validated by chronic epicortical (12 week) and intraneural (8 week) implantation. This work describes a graphene-based thin-film microelectrode technology and demonstrates its potential for high-precision and high-resolution neural interfacing.


Assuntos
Grafite , Nanoporos , Ratos , Animais , Microeletrodos , Próteses e Implantes , Estimulação Elétrica
5.
Brain Struct Funct ; 228(6): 1371-1378, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37358661

RESUMO

The first report of corpora amylacea (CA) is attributed to Morgagni, who described them in the prostate in the eighteenth century. Nearly a hundred years later, and following the lead started by Purkinje, Virchow described them in the brain. He made a detailed description of the most useful techniques to visualize them, but he failed to describe the cause of why CA do appear, why they are mainly linked with the elderly, and which is their clinical significance. Although in the last two centuries CA have received little attention, recent data have been able to describe that CA accumulate waste products and that some of them can be found in the cerebrospinal fluid and lymphatic nodes, after being released from the brain. Indeed, CA have been renamed to wasteosomes to underline the waste products they gather and to avoid confusion with the term amyloid used by Virchow, now widely related to certain protein deposits found in the brain. Here, after providing a commented English translation of Virchow's findings, we provide a recent update on these structures and their connection with the glymphatic system insufficiency, for which wasteosomes should be considered a hallmark, and how these bodies could serve as diagnostic or prognostic markers of various brain conditions.


Assuntos
Encefalopatias , Encéfalo , Masculino , Humanos , Idoso , Amiloide , Resíduos
6.
Front Aging Neurosci ; 15: 1110425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065464

RESUMO

Brain corpora amylacea, recently renamed as wasteosomes, are polyglucosan bodies that appear during aging and some neurodegenerative conditions. They collect waste substances and are part of a brain cleaning mechanism. For decades, studies on their composition have produced inconsistent results and the presence of tau protein in them has been controversial. In this work, we reanalyzed the presence of this protein in wasteosomes and we pointed out a methodological problem when immunolabeling. It is well known that to detect tau it is necessary to perform an antigen retrieval. However, in the case of wasteosomes, an excessive antigen retrieval with boiling dissolves their polyglucosan structure, releases the entrapped proteins and, thus, prevents their detection. After performing an adequate pre-treatment, with an intermediate time of boiling, we observed that some brain wasteosomes from patients with Alzheimer's disease (AD) contained tau, while we did not detect tau protein in those from non-AD patients. These observations pointed the different composition of wasteosomes depending on the neuropathological condition and reinforce the role of wasteosomes as waste containers.

7.
Proc Natl Acad Sci U S A ; 119(48): e2211326119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409907

RESUMO

In different organs and tissues, the lymphatic system serves as a drainage system for interstitial fluid and is useful for removing substances that would otherwise accumulate in the interstitium. In the brain, which lacks lymphatic circulation, the drainage and cleaning function is performed by the glymphatic system, called so for its dependence on glial cells and its similar function to that of the lymphatic system. In the present article, we define glymphatic insufficiency as the inability of the glymphatic system to properly perform the brain cleaning function. Furthermore, we propose that corpora amylacea or wasteosomes, which are protective structures that act as waste containers and accumulate waste products, are, in fact, a manifestation of chronic glymphatic insufficiency. Assuming this premise, we provide an explanation that coherently links the formation, distribution, structure, and function of these bodies in the human brain. Moreover, we open up new perspectives in the study of the glymphatic system since wasteosomes can provide information about which variables have the greatest impact on the glymphatic system and which diseases occur with chronic glymphatic insufficiency. For example, based on the presence of wasteosomes, it seems that aging, sleep disorders, and cerebrovascular pathologies have the highest impact on the glymphatic system, whereas neurodegenerative diseases have a more limited impact. Furthermore, as glymphatic insufficiency is a risk factor for neurodegenerative diseases, information provided by wasteosomes could help to define the strategies and actions that can prevent glymphatic disruptions, thus limiting the risk of developing neurodegenerative diseases.


Assuntos
Sistema Glinfático , Doenças Neurodegenerativas , Humanos , Encéfalo , Sistema Linfático , Envelhecimento
8.
Cell Biosci ; 12(1): 177, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307854

RESUMO

BACKGROUND: Corpora amylacea of human brain, recently renamed as wasteosomes, are granular structures that appear during aging and also accumulate in specific areas of the brain in neurodegenerative conditions. Acting as waste containers, wasteosomes are formed by polyglucosan aggregates that entrap and isolate toxic and waste substances of different origins. They are expelled from the brain to the cerebrospinal fluid (CSF), and can be phagocytosed by macrophages. In the present study, we analyze the phagocytosis of wasteosomes and the mechanisms involved in this process. Accordingly, we purified wasteosomes from post-mortem extracted human CSF and incubated them with THP-1 macrophages. Immunofluorescence staining and time-lapse recording techniques were performed to evaluate the phagocytosis. We also immunostained human hippocampal sections to study possible interactions between wasteosomes and macrophages at central nervous system interfaces. RESULTS: We observed that the wasteosomes obtained from post-mortem extracted CSF are opsonized by MBL and the C3b complement protein. Moreover, we observed that CD206 and CD35 receptors may be involved in the phagocytosis of these wasteosomes by THP-1 macrophages. Once phagocytosed, wasteosomes become degraded and some of the resulting fractions can be exposed on the surface of macrophages and interchanged between different macrophages. However, brain tissue studies show that, in physiological conditions, CD206 but not CD35 receptors may be involved in the phagocytosis of wasteosomes. CONCLUSIONS: The present study indicates that macrophages have the machinery required to process and degrade wasteosomes, and that macrophages can interact in different ways with wasteosomes. In physiological conditions, the main mechanism involve CD206 receptors and M2 macrophages, which trigger the phagocytosis of wasteosomes without inducing inflammatory responses, thus avoiding tissue damage. However, altered wasteosomes like those obtained from post-mortem extracted CSF, which may exhibit waste elements, become opsonized by MBL and C3b, and so CD35 receptors constitute another possible mechanism of phagocytosis, leading in this case to inflammatory responses.

9.
Ageing Res Rev ; 72: 101484, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634491

RESUMO

Corpora amylacea (CA) have been described in several human organs and have been associated with ageing and several pathological conditions. Although they were first discovered two centuries ago, their function and significance have not yet been identified. Here, we provide a chronological summary of the findings on CA in various organs and identify their similarities. After collecting and integrating these findings, we propose to consider CA as waste containers created by specific cells, which sequester waste products and foreign products, and assemble them within a glycan structure. The containers are then secreted into the external medium or interstitial spaces, in this latter case subsequently being phagocytosed by macrophages. This proposal explains, among others, why CA are so varied in content, why only some of them contain fibrillary amyloid proteins, why all of them contain glycan structures, why some of them contain neo-epitopes and are phagocytosed, and why they can be intracellular or extracellular structures. Lastly, in order to avoid the ambiguity of the term amyloid (which can indicate starch-like structures but also insoluble fibrillary proteins), we propose renaming CA as "wasteosomes", emphasising the waste products they entrap rather than their misleading amyloid properties.


Assuntos
Envelhecimento , Fagocitose , Citoesqueleto , Epitopos , Humanos
10.
Front Immunol ; 12: 618193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262556

RESUMO

Corpora amylacea (CA) in the human brain are polyglucosan bodies that accumulate residual substances originated from aging and both neurodegenerative and infectious processes. These structures, which act as waste containers, are released from the brain to the cerebrospinal fluid, reach the cervical lymph nodes via the meningeal lymphatic system and may be phagocytosed by macrophages. Recent studies indicate that CA present certain neoepitopes (NEs) that can be recognized by natural antibodies of the IgM class, and although evidence of different kinds suggests that these NEs may be formed by carbohydrate structures, their precise nature is unknown. Here, we adapted standard techniques to examine this question. We observed that the preadsorption of IgMs with specific carbohydrates has inhibitory effects on the interaction between IgMs and CA, and found that the digestion of CA proteins had no effect on this interaction. These findings point to the carbohydrate nature of the NEs located in CA. Moreover, the present study indicates that, in vitro, the binding between certain natural IgMs and certain epitopes may be disrupted by certain monosaccharides. We wonder, therefore, whether these inhibitions may also occur in vivo. Further studies should now be carried out to assess the possible in vivo effect of glycemia on the reactivity of natural IgMs and, by extension, on natural immunity.


Assuntos
Envelhecimento , Carboidratos/imunologia , Epitopos/imunologia , Hipocampo/imunologia , Corpos de Inclusão/imunologia , Idoso , Idoso de 80 Anos ou mais , Astrócitos/imunologia , Encéfalo/imunologia , Encéfalo/patologia , Epitopos/metabolismo , Feminino , Humanos , Masculino
11.
Front Bioeng Biotechnol ; 9: 615218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644015

RESUMO

Neural regeneration after lesions is still limited by several factors and new technologies are developed to address this issue. Here, we present and test in animal models a new regenerative nerve cuff electrode (RnCE). It is based on a novel low-cost fabrication strategy, called "Print and Shrink", which combines the inkjet printing of a conducting polymer with a heat-shrinkable polymer substrate for the development of a bioelectronic interface. This method allows to produce miniaturized regenerative cuff electrodes without the use of cleanroom facilities and vacuum based deposition methods, thus highly reducing the production costs. To fully proof the electrodes performance in vivo we assessed functional recovery and adequacy to support axonal regeneration after section of rat sciatic nerves and repair with RnCE. We investigated the possibility to stimulate the nerve to activate different muscles, both in acute and chronic scenarios. Three months after implantation, RnCEs were able to stimulate regenerated motor axons and induce a muscular response. The capability to produce fully-transparent nerve interfaces provided with polymeric microelectrodes through a cost-effective manufacturing process is an unexplored approach in neuroprosthesis field. Our findings pave the way to the development of new and more usable technologies for nerve regeneration and neuromodulation.

12.
J Neural Eng ; 17(6)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33142283

RESUMO

Objective.Among the different approaches for denoising neural signals, wavelet-based methods are widely used due to their ability to reduce in-band noise. All wavelet denoising algorithms have a common structure, but their effectiveness strongly depends on several implementation choices, including the mother wavelet, the decomposition level, the threshold definition, and the way it is applied (i.e. the thresholding). In this work, we investigated these factors to quantitatively assess their effects on neural signals in terms of noise reduction and morphology preservation, which are important when spike sorting is required downstream.Approach.Based on the spectral characteristics of the neural signal, according to the sampling rate of the signals, we considered two possible decomposition levels and identified the best-performing mother wavelet. Then, we compared different threshold estimation and thresholding methods and, for the best ones, we also evaluated their effect on clearing the approximation coefficients. The assessments were performed on synthetic signals that had been corrupted by different types of noise and on a murine peripheral nervous system dataset, both of which were sampled at about 16 kHz. The results were statistically analysed in terms of their Pearson's correlation coefficients, root-mean-square errors, and signal-to-noise ratios.Main results.As expected, the wavelet implementation choices greatly influenced the processing performance. Overall, the Haar wavelet with a five-level decomposition, hard thresholding method, and the threshold proposed by Hanet al(2007) achieved the best outcomes. Based on the adopted performance metrics, wavelet denoising with these parametrizations outperformed conventional 300-3000 Hz linear bandpass filtering.Significance.These results can be used to guide the reasoned and accurate selection of wavelet denoising implementation choices in the context of neural signal processing, particularly when spike-morphology preservation is required.


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Animais , Camundongos , Razão Sinal-Ruído , Análise de Ondaletas
13.
J Neural Eng ; 17(4): 046037, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32717730

RESUMO

OBJECTIVE: It is known that multi-site interleaved stimulation generates less muscle fatigue compared to single-site synchronous stimulation. However, in the limited number of studies in which intramuscular electrodes were used, the fatigue reduction associated with interleaved stimulation could not consistently be achieved. We hypothesize that this could be due to the inability to place the intramuscular electrodes used in interleaved stimulation in locations that minimize overlap amongst the motor units activated by the electrodes. Our objective in the present study was to use independent intramuscular electrodes to compare fatigue induced by interleaved stimulation with that generated by synchronous stimulation at the same initial force and ripple. APPROACH: In the medial gastrocnemius muscle of an anesthetized rabbit (n = 3), ten intramuscular hook wire electrodes were inserted at different distances from the nerve entry. Overlap was measured using the refractory technique and only three electrodes were found to be highly independent. After ensuring that forces obtained by both stimulation modalities had the same ripple and magnitude, fatigue induced during interleaved stimulation across three independent distal electrodes was compared to that obtained by synchronously delivering pulses to a single proximal electrode. MAIN RESULTS: Contractions evoked by interleaved stimulation exhibited less fatigue than those evoked by synchronous stimulation. Twitch force recruitment curves collected from each of the ten intramuscular electrodes showed frequent intermediate plateaus and the force value at these plateaus decreased as the distance between the electrode and nerve entry increased. SIGNIFICANCE: The results indicate that interleaved intramuscular stimulation is preferred over synchronous intramuscular stimulation when fatigue-resistant and smooth forces are desired. In addition, the results suggest that the large muscle compartments innervated by the primary intramuscular nerve branches give rise to progressively smaller independent compartments in subsequent nerve divisions.


Assuntos
Fadiga Muscular , Músculo Esquelético , Animais , Estimulação Elétrica , Eletrodos , Contração Muscular , Coelhos
14.
J Neurosci Methods ; 337: 108653, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114143

RESUMO

Neurointerfaces have acquired major relevance as both rehabilitative and therapeutic tools for patients with spinal cord injury, limb amputations and other neural disorders. Bidirectional neural interfaces are a key component for the functional control of neuroprosthetic devices. The two main neuroprosthetic applications of interfaces with the peripheral nervous system (PNS) are: the refined control of artificial prostheses with sensory neural feedback, and functional electrical stimulation (FES) systems attempting to generate motor or visceral responses in paralyzed organs. The results obtained in experimental and clinical studies with both, extraneural and intraneural electrodes are very promising in terms of the achieved functionality for the neural stimulation mode. However, the results of neural recordings with peripheral nerve interfaces are more limited. In this paper we review the different existing approaches for PNS signals recording, denoising, processing and classification, enabling their use for bidirectional interfaces. PNS recordings can provide three types of signals: i) population activity signals recorded by using extraneural electrodes placed on the outer surface of the nerve, which carry information about cumulative nerve activity; ii) spike activity signals recorded with intraneural electrodes placed inside the nerve, which carry information about the electrical activity of a set of individual nerve fibers; and iii) hybrid signals, which contain both spiking and cumulative signals. Finally, we also point out some of the main limitations, which are hampering clinical translation of neural decoding, and indicate possible solutions for improvement.


Assuntos
Membros Artificiais , Estimulação Elétrica , Eletrodos , Humanos , Nervos Periféricos , Sistema Nervoso Periférico
15.
Front Cell Neurosci ; 13: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809129

RESUMO

Axonal growth during normal development and axonal regeneration rely on the action of many receptor signaling systems and complexes, most of them located in specialized raft membrane microdomains with a precise lipid composition. Cholesterol is a component of membrane rafts and the integrity of these structures depends on the concentrations present of this compound. Here we explored the effect of cholesterol depletion in both developing neurons and regenerating axons. First, we show that cholesterol depletion in vitro in developing neurons from the central and peripheral nervous systems increases the size of growth cones, the density of filopodium-like structures and the number of neurite branching points. Next, we demonstrate that cholesterol depletion enhances axonal regeneration after axotomy in vitro both in a microfluidic system using dissociated hippocampal neurons and in a slice-coculture organotypic model of axotomy and regeneration. Finally, using axotomy experiments in the sciatic nerve, we also show that cholesterol depletion favors axonal regeneration in vivo. Importantly, the enhanced regeneration observed in peripheral axons also correlated with earlier electrophysiological responses, thereby indicating functional recovery following the regeneration. Taken together, our results suggest that cholesterol depletion per se is able to promote axonal growth in developing axons and to increase axonal regeneration in vitro and in vivo both in the central and peripheral nervous systems.

16.
Anat Rec (Hoboken) ; 301(10): 1722-1733, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30353712

RESUMO

Intraneural electrodes must be in intimate contact with nerve fibers to have a proper function, but this interface is compromised due to the foreign body reaction (FBR). The FBR is characterized by a first inflammatory phase followed by a second anti-inflammatory and fibrotic phase, which results in the formation of a tissue capsule around the implant, causing physical separation between the active sites of the electrode and the nerve fibers. We have tested systemically several anti-inflammatory drugs such as dexamethasone (subcutaneous), ibuprofen and maraviroc (oral) to reduce macrophage activation, as well as clodronate liposomes (intraperitoneal) to reduce monocyte/macrophage infiltration, and sildenafil (oral) as an antifibrotic drug to reduce collagen deposition in an FBR model with longitudinal Parylene C intraneural implants in the rat sciatic nerve. Treatment with dexamethasone, ibuprofen, or clodronate significantly reduced the inflammatory reaction in the nerve in comparison to the saline group after 2 weeks of the implant, whereas sildenafil and maraviroc had no effect on infiltration of macrophages in the nerve. However, only dexamethasone was able to significantly reduce the matrix deposition around the implant. Similar positive results were obtained with dexamethasone in the case of polyimide-based intraneural implants, another polymer substrate for the electrode. These results indicate that inflammation triggers the FBR in peripheral nerves, and that anti-inflammatory treatment with dexamethasone may have beneficial effects on lengthening intraneural interface functionality. Anat Rec, 301:1722-1733, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Anti-Inflamatórios/uso terapêutico , Dexametasona/uso terapêutico , Eletrodos Implantados/efeitos adversos , Reação a Corpo Estranho/prevenção & controle , Neuropatia Tibial/prevenção & controle , Animais , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Reação a Corpo Estranho/etiologia , Polímeros/efeitos adversos , Ratos Sprague-Dawley , Neuropatia Tibial/etiologia
17.
Sci Rep ; 8(1): 5965, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654317

RESUMO

Parylene C is a highly flexible polymer used in several biomedical implants. Since previous studies have reported valuable biocompatible and manufacturing characteristics for brain and intraneural implants, we tested its suitability as a substrate for peripheral nerve electrodes. We evaluated 1-year-aged in vitro samples, where no chemical differences were observed and only a slight deviation on Young's modulus was found. The foreign body reaction (FBR) to longitudinal Parylene C devices implanted in the rat sciatic nerve for 8 months was characterized. After 2 weeks, a capsule was formed around the device, which continued increasing up to 16 and 32 weeks. Histological analyses revealed two cell types implicated in the FBR: macrophages, in contact with the device, and fibroblasts, localized in the outermost zone after 8 weeks. Molecular analysis of implanted nerves comparing Parylene C and polyimide devices revealed a peak of inflammatory cytokines after 1 day of implant, returning to low levels thereafter. Only an increase of CCL2 and CCL3 was found at chronic time-points for both materials. Although no molecular differences in the FBR to both polymers were found, the thick tissue capsule formed around Parylene C puts some concern on its use as a scaffold for intraneural electrodes.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Nervos Periféricos/efeitos dos fármacos , Polímeros/administração & dosagem , Xilenos/administração & dosagem , Animais , Citocinas/metabolismo , Módulo de Elasticidade/efeitos dos fármacos , Eletrodos Implantados , Feminino , Reação a Corpo Estranho/tratamento farmacológico , Reação a Corpo Estranho/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Microeletrodos , Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo
18.
J Tissue Eng Regen Med ; 12(4): e1991-e2000, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29266822

RESUMO

Segregation of regenerating motor and sensory axons may be a good strategy to improve selective functionality of regenerative interfaces to provide closed-loop commands. Provided that extracellular matrix components and neurotrophic factors exert guidance effects on different neuronal populations, we assessed in vivo the potential of separating sensory and motor axons regenerating in a bicompartmental Y-type tube, with each branch prefilled with an adequate combination of extracellular matrix and neurotrophic factors. The severed rat sciatic nerve was repaired using a bicompartmental tube filled with a collagen matrix enriched with fibronectin (FN) and brain-derived neurotrophic factor (BDNF) encapsulated in poly-lactic co-glycolic acid microspheres (FN + MP.BDNF) in one compartment to preferentially attract motor axons and collagen enriched with laminin (LM) and nerve growth factor (NGF) and neurotrophin-3 (NT-3) in microspheres (LM + MP.NGF/NT-3) in the other compartment for promoting sensory axons regeneration. Control animals were implanted with the same Y-tube with a collagen matrix with microspheres (MP) containing PBS (Col + MP.PBS). By using retrotracer labelling, we found that LM + MP.NGF/NT-3 did not attract higher number of regenerated sensory axons compared with controls, and no differences were observed in sensory functional recovery. However, FN + MP.BDNF guided a higher number of regenerating motor axons compared with controls, improving also motor recovery. A small proportion of sensory axons with large soma size, likely proprioceptive neurons, was also attracted to the FN + MP.BDNF compartment. These results demonstrate that muscular axonal guidance can be modulated in vivo by the addition of fibronectin and BDNF.


Assuntos
Axônios/metabolismo , Matriz Extracelular/química , Neurônios Motores/metabolismo , Fatores de Crescimento Neural , Regeneração/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Animais , Axônios/patologia , Feminino , Neurônios Motores/patologia , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/farmacologia , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/patologia
19.
J Biomed Mater Res A ; 106(3): 746-757, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29052368

RESUMO

The foreign body reaction (FBR) against an implanted device is characterized by the formation of a fibrotic tissue around the implant. In the case of interfaces for peripheral nerves, used to stimulate specific group of axons and to record different nerve signals, the FBR induces a matrix deposition around the implant creating a physical separation between nerve fibers and the interface that may reduce its functionality over time. In order to understand how the FBR to intraneural interfaces evolves, polyimide non-functional devices were implanted in rat peripheral nerve. Functional tests (electrophysiological, pain and locomotion) and histological evaluation demonstrated that implanted devices did not cause any alteration in nerve function, in myelinated axons or in nerve architecture. The inflammatory response due to the surgical implantation decreased after 2 weeks. In contrast, inflammation was higher and more prolonged in the device implanted nerves with a peak after 2 weeks. With regard to tissue deposition, a tissue capsule appeared soon around the devices, acquiring maximal thickness at 2 weeks and being remodeled subsequently. Immunohistochemical analysis revealed two different cell types implicated in the FBR in the nerve: macrophages as the first cells in contact with the interface and fibroblasts that appear later at the edge of the capsule. Our results describe how the FBR against a polyimide implant in the peripheral nerve occurs and which are the main cellular players. Increasing knowledge of these responses will help to improve strategies to decrease the FBR against intraneural implants and to extend their usability. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 746-757, 2018.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Reação a Corpo Estranho/patologia , Imidas/efeitos adversos , Implantes Experimentais , Fibras Nervosas/patologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Células Gigantes de Corpo Estranho , Inflamação/patologia , Macrófagos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1938-1941, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060272

RESUMO

A biomedical interface that combines into a single and compact device the recording of biopotentials and the electrical stimulation of neural fibres is presented. It is intended for enabling the control over a robotic hand and for restoring the sensory feedback in amputees by directly interfacing the peripheral nervous system (PNS) in closed-loop. A modular system consisting in one or more independent 16-channels bidirectional units was conceived. Each module is based on three 0.35µm bulk-CMOS integrated circuits (ICs): a recording unit, a High-Voltage (HV) stimulator and a HV booster. A tunable bandwidth (10Hz-8kHz) allows the recording IC to acquire both electroneurographyc (ENG) and electromiographyc (EMG) signals with a programmable gain up to 43.5dB. The signals are then converted into a digital domain by means of a ΣΔ converter. Due to the typical high impedance at the electrode-tissue interface, a programmable HV booster that increases the stimulation voltage up to 19V was designed. It is directly controlled by the stimulation module that generates current-based pulses with a programmable amplitude and pulse-width. The whole system was validated by means of in-vivo experiments in rats.


Assuntos
Sistema Nervoso Periférico , Amputados , Animais , Estimulação Elétrica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...