Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PM R ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37873699

RESUMO

BACKGROUND: The efficacy of transcranial direct current stimulation (tDCS) has been studied extensively. The cathodic (c-tDCS), anodic (a-tDCS), and bihemispheric stimulation have demonstrated efficacy in the management of the paretic upper extremity (UE) after stroke, but it has not been determined which stimulation polarity has, so far, shown the best results. OBJECTIVE: To evaluate the available evidence to determine which tDCS polarity has the best results in improving UE motor function after stroke. METHODS: PubMed, PEDro, Web of Science, EMBASE, and SCOPUS databases were searched. Different Medical Subject Headings (MeSH) terms were combined for the search strategy, to cover all studies that performed a comparison between different tDCS configurations focused on UE motor rehabilitation in people with lived experience of stroke. RESULTS: Fifteen studies remained for qualitative analysis and 12 for quantitative analysis. Non-significant differences with a 95% confidence interval (CI) were obtained for c-tDCS versus a-tDCS (g = 0.10, 95% CI = -0.13; 0.33, p = .39, N = 292), for a-tDCS versus bihemispheric (g = 0.02, 95% CI = -0.46; 0.42, p = .93, N = 81), and for c-tDCS versus bihemispheric (g = 0.09, 95% CI = -0.84; .66, p = .73, N = 100). No significant differences between the subgroups of the meta-analysis were found. CONCLUSIONS: The results of the present meta-analysis showed no evidence that a stimulation polarity is superior to the others in the rehabilitation of UE motor function after stroke. A non-significant improvement trend was observed toward c-tDCS compared to a-tDCS.

2.
Gait Posture ; 98: 85-95, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088898

RESUMO

BACKGROUND: Parkinson's disease (PD) causes postural instability and gait abnormalities that may be associated with an arm swing reduction. OBJECTIVE: To conduct systematic review and meta-analysis to determine the kinematic patterns of arm-swing during gait in people with PD METHODS: A computer literature search of the PubMed, EMBASE, WOS, PEDro, SCOPUS and SciELO databases was conducted. Terms related to PD and arm-swing were combined to find studies that performed a free walking evaluation of the arm-swing of PD patients on or off medication compared to healthy controls. After a standardized evaluation by three examiners, fifteen articles met inclusion criteria. Random effects meta-analysis models were utilized to quantify (1) the arm-swing range of motion (RoM); (2) the arm-swing amplitude; (3) the arm-swing velocity; and (4) the arm-swing asymmetry. RESULTS: On average, arm-swing RoM (7.07°), amplitude (0.8 cm), and velocity (0.31 m/s) were significantly decreased in PD compared to healthy controls. Healthy subjects had significantly more symmetrical arm-swing (8.16%) than people with PD. Effect sizes were moderate-large. CONCLUSIONS: People with PD have significant differences in RoM, amplitude, velocity, and asymmetry of arm-swing during gait compared to the healthy control group. Medication phase does not significantly influence arm-swing characteristics. Further studies will be needed to determine whether different disease characteristics influence the biomechanics of arm-swing during gait.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Fenômenos Biomecânicos , Doença de Parkinson/complicações , Braço , Marcha , Transtornos Neurológicos da Marcha/complicações , Caminhada
3.
Eur J Phys Rehabil Med ; 58(5): 738-748, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35758072

RESUMO

INTRODUCTION: Phantom limb pain (PLP) after amputation is a frequent entity that conditions the life of those who suffer it. Current treatment methods are not sufficiently effective for PLP management. We aim to analyze the clinical application of transcranial direct current (tDCS) in people with amputation suffering from PLP. EVIDENCE ACQUISITION: The following databases were consulted in September 2021: MEDLINE, EMBASE, The Web of Science, PEDro, SCOPUS and SciELO. Randomized controlled trials investigating the use of tDCS in people with amputation undergoing PLP were selected. Demographic data, type and cause of amputation, time since amputation, stimulation parameters, and outcomes were extracted. EVIDENCE SYNTHESIS: Six articles were included in this review (seven studies were considered because one study performed two individual protocols). All included studies evaluated PLP; six evaluated the phantom limb sensations (PLS) and two evaluated the psychiatric disorders. In all included studies the intensity and frequency of PLP was reduced, in three PLS were reduced, and in none study psychiatric symptoms were modified. CONCLUSIONS: Anodic tDCS over the contralateral M1 to the affected limb, with an intensity of 1-2 mA, for 15-20 minutes seems to significantly reduce PLP in people with amputation. Single-session treatment could modify PLP intensity for hours, and multi-session treatment could modify PLP for months. Limited evidence suggests that PLS and psychiatric disorders should be treated with different PLP electrode placements. Further studies with larger sample size and longer follow-up times are needed to establish the priority of tDCS application in the PLP management.


Assuntos
Membro Fantasma , Estimulação Transcraniana por Corrente Contínua , Humanos , Amputação Cirúrgica , Membro Fantasma/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Sensação , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/métodos
4.
Sensors (Basel) ; 21(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34372453

RESUMO

BACKGROUND: The effectiveness of transcranial direct current stimulation (tDCS) in the upper limb (UL) motor rehabilitation of stroke has been widely studied. However, the long-term maintenance of its improvements has not yet been proven. METHODS: A systematic search was conducted in MEDLINE/Pubmed, Web of Science, PEDRo, and Scopus databases from inception to April 2021. Randomized controlled trials were included if they performed a tDCS intervention combined with UL rehabilitation in stroke patients, performed several sessions (five or more), and assessed long-term results (at least three-month follow-up). Risk of bias and methodological quality were evaluated with the Cochrane RoB-2 and the Oxford quality scoring system. RESULTS: Nine studies were included, showing a high methodological quality. Findings regarding UL were categorized into (1) functionality, (2) strength, (3) spasticity. All the studies that showed significant improvements retained them in the long term. Baseline functionality may be a limiting factor in achieving motor improvements, but not in sustaining them over the long term. CONCLUSION: It seems that the improvements achieved during the application of tDCS combined with UL motor rehabilitation in stroke were preserved until the follow-up time (from 3 months to 1 year). Further studies are needed to clarify the long-term effects of tDCS.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Resultado do Tratamento , Extremidade Superior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...