Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 138(11): 2359-68, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21558382

RESUMO

Blood vessels have been shown to play perfusion-independent roles in organogenesis. Here, we examined whether blood vessels determine branching stereotypy of the mouse lung airways in which coordinated branching of epithelial and vascular tubes culminates in their co-alignment. Using different ablative strategies to eliminate the lung vasculature, both in vivo and in lung explants, we show that proximity to the vasculature is indeed essential for patterning airway branching. Remarkably, although epithelial branching per se proceeded at a nearly normal rate, branching stereotypy was dramatically perturbed following vascular ablation. Specifically, branching events requiring a rotation to change the branching plane were selectively affected. This was evidenced by either the complete absence or the shallow angle of their projections, with both events contributing to an overall flat lung morphology. Vascular ablation also led to a high frequency of ectopic branching. Regain of vascularization fully rescued arrested airway branching and restored normal lung size and its three-dimensional architecture. This role of the vasculature is independent of perfusion, flow or blood-borne substances. Inhibition of normal branching resulting from vascular loss could be explained in part by perturbing the unique spatial expression pattern of the key branching mediator FGF10 and by misregulated expression of the branching regulators Shh and sprouty2. Together, these findings uncovered a novel role of the vasculature in organogenesis, namely, determining stereotypy of epithelial branching morphogenesis.


Assuntos
Pulmão/irrigação sanguínea , Pulmão/embriologia , Organogênese , Proteínas Adaptadoras de Transdução de Sinal , Animais , Comunicação Celular , Células Endoteliais/fisiologia , Fator 10 de Crescimento de Fibroblastos/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/biossíntese , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Morfogênese , Neovascularização Fisiológica , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Development ; 138(2): 273-82, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21148187

RESUMO

During embryonic development, appropriate dorsoventral patterning of the trachea leads to the formation of periodic cartilage rings from the ventral mesenchyme and continuous smooth muscle from the dorsal mesenchyme. In this work, we have investigated the role of two crucial morphogens, fibroblast growth factor 10 and sonic hedgehog, in the formation of periodically alternating cartilaginous and non-cartilaginous domains in the ventral mesenchyme. Using a combination of gain- and loss-of-function approaches for FGF10 and SHH, we demonstrate that precise spatio-temporal patterns and appropriate levels of expression of these two signaling molecules in the ventral area are crucial between embryonic day 11.5 and 13.5 for the proper patterning of the cartilage rings. We conclude that the expression level of FGF10 in the mesenchyme has to be within a critical range to allow for periodic expression of Shh in the ventral epithelium, and consequently for the correct patterning of the cartilage rings. We propose that disturbed balances of Fgf10 and Shh may explain a subset of human tracheomalacia without tracheo-esophageal fistula or tracheal atresia.


Assuntos
Cartilagem/embriologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Proteínas Hedgehog/fisiologia , Traqueia/embriologia , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Cartilagem/anormalidades , Cartilagem/metabolismo , Diferenciação Celular , Proliferação de Células , Epitélio/embriologia , Feminino , Fator 10 de Crescimento de Fibroblastos/deficiência , Fator 10 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Humanos , Hibridização In Situ , Mesoderma/embriologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Transdução de Sinais , Traqueia/anormalidades , Traqueia/metabolismo
3.
J Vis Exp ; (40)2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20644505

RESUMO

Lung primordial specification as well as branching morphogenesis, and the formation of various pulmonary cell lineages requires a specific interaction of the lung endoderm with its surrounding mesenchyme and mesothelium. Lung mesenchyme has been shown to be the source of inductive signals for lung branching morphogenesis. Epithelial-mesenchymal-mesothelial interactions are also critical to embryonic lung morphogenesis. Early embryonic lung organ culture is a very useful system to study epithelial-mesenchymal interactions. Both epithelial and mesenchymal morphogenesis proceeds under specific conditions that can be readily manipulated in this system (in the absence of maternal influence and blood flow). More importantly this technique can be readily done in a serumless, chemically defined culture media. Gain and loss of function can be achieved using expressed proteins, recombinant viral vectors and/or analysis of transgenic mouse strains, antisense RNA, as well as RNA interference gene knockdown.


Assuntos
Pulmão/embriologia , Técnicas de Cultura de Órgãos/métodos , Animais , Feminino , Pulmão/citologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
4.
Methods Mol Biol ; 633: 71-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20204620

RESUMO

Lung primordial specification as well as branching morphogenesis, and the formation of various pulmonary cell lineages, requires a specific interaction of the lung endoderm with its surrounding mesenchyme and mesothelium. Lung mesenchyme has been shown to be the source of inductive signals for lung branching morphogenesis. Epithelial-mesenchymal-mesothelial interactions are also critical to embryonic lung morphogenesis. Early embryonic lung organ culture is a very useful system to study epithelial-mesenchymal interactions. Both epithelial and mesenchymal morphogenesis proceed under specific conditions that can be readily manipulated in this system (in the absence of maternal influence and blood flow). More importantly this technique can be readily done in a serumless, chemically defined culture media. Gain and loss of function can be achieved using expressed proteins, recombinant viral vectors, and/or analysis of transgenic mouse strains, antisense RNA, as well as RNA interference gene knockdown. Additionally, to further study epithelial-mesenchymal interactions, the relative roles of epithelium versus mesenchyme signaling can also be determined using tissue recombination (e.g., epithelial and mesenchymal separation) and microbead studies.


Assuntos
Diferenciação Celular , Pulmão/citologia , Pulmão/embriologia , Mesoderma/citologia , Morfogênese , Técnicas de Cultura de Órgãos/métodos , Técnicas de Cultura de Tecidos/métodos , Animais , Separação Celular , Dissecação , Epitélio/embriologia , Epitélio/metabolismo , Feminino , Mesoderma/embriologia , Camundongos , Gravidez
5.
Mech Dev ; 125(3-4): 314-24, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18082381

RESUMO

Tracheal occlusion during lung development accelerates growth in response to increased intraluminal pressure. In order to investigate the role of internal pressure on murine early lung development, we cauterized the tip of the trachea, to occlude it, and thus to increase internal pressure. This method allowed us to evaluate the effect of tracheal occlusion on the first few branch generations and on gene expression. We observed that the elevation of internal pressure induced more than a doubling in branching, associated with increased proliferation, while branch elongation speed increased 3-fold. Analysis by RT-PCR showed that Fgf10, Vegf, Sprouty2 and Shh mRNA expressions were affected by the change of intraluminal pressure after 48h of culture, suggesting mechanotransduction via internal pressure of these key developmental genes. Tracheal occlusion did not increase the number of branches of Fgfr2b-/- mice lungs nor of wild type lungs cultured with Fgfr2b antisense RNA. Tracheal occlusion of Fgf10(LacZ/-) hypomorphic lungs led to the formation of fewer branches than in wild type. We conclude that internal pressure regulates the FGF10-FGFR2b-Sprouty2 pathway and thus the speed of the branching process. Therefore pressure levels, fixed both by epithelial secretion and boundary conditions, can control or modulate the branching process via FGF10-FGFR2b-Sprouty2.


Assuntos
Fator 10 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/embriologia , Mecanotransdução Celular , Proteínas de Membrana/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Traqueia/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Peptídeos e Proteínas de Sinalização Intracelular , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Camundongos , Morfogênese/genética , Neovascularização Fisiológica/genética , Pressão , Proteínas Serina-Treonina Quinases , RNA Antissenso/farmacologia , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/embriologia
6.
Dev Biol ; 299(2): 373-85, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16956603

RESUMO

Epithelial-mesenchymal interactions that govern the development of the colon from the primitive gastrointestinal tract are still unclear. In this study, we determine the temporal-spatial expression pattern of Fibroblast growth factor 10 (Fgf10), a key developmental gene, in the colon at different developmental stages. We found that Fgf10 is expressed in the mesenchyme of the distal colon, while its main receptor Fgfr2-IIIb is expressed throughout the entire intestinal epithelium. We demonstrate that Fgf10 inactivation leads to decreased proliferation and increased cell apoptosis in the colonic epithelium at E10.5, therefore resulting in distal colonic atresia. Using newly described Fgf10 hypomorphic mice, we show that high levels of FGF10 are dispensable for the differentiation of the colonic epithelium. Our work unravels for the first time the pivotal role of FGF10 in the survival and proliferation of the colonic epithelium, biological activities which are essential for colonic crypt formation.


Assuntos
Proliferação de Células , Colo/fisiologia , Células Epiteliais/fisiologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Mucosa Intestinal/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Sobrevivência Celular , Colo/citologia , Colo/embriologia , Células Epiteliais/citologia , Mucosa Intestinal/citologia , Mucosa Intestinal/embriologia , Mesoderma/fisiologia , Camundongos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Células-Tronco/citologia
7.
Dev Biol ; 293(1): 77-89, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16494859

RESUMO

Mesothelial Fibroblast Growth Factor 9 (Fgf9) has been demonstrated by inactivation studies in mouse to be critical for the proliferation of the mesenchyme. We now show that Fgf9 is also expressed at significant levels in the distal epithelium from the mid-pseudoglandular stages. Using mesenchymal-free lung endoderm culture, we show that FGF9 triggers the proliferation of the distal epithelium leading to the formation of a cyst-like structure. On embryonic Fgfr2b-/- lungs, FGF9 induces proliferation of the mesenchyme but fails to trigger a similar effect on the epithelium, therefore involving the FGFR2b receptor in the proliferative response of the epithelium to FGF9. While FGF9 inhibits the differentiation of the mesenchyme, the epithelium appears to differentiate normally. At the molecular level, FGF9 up-regulates Fgf10 expression in the mesenchyme likely via increased expression of Tbx4 and 5 and controls the transcription of Hedgehog targets Ptc and Gli-1 in a Hedgehog-independent manner. We also show that FGF9 inhibits the activation of the canonical Wnt pathway in the epithelium by increasing Dkk1 expression, a canonical Wnt antagonist. Our work shows for the first time that FGF9 acts on the epithelium involving FGFR2b to control its proliferation but not its differentiation and contributes to the regulation of canonical Wnt signaling in the epithelium.


Assuntos
Epitélio/metabolismo , Fator 9 de Crescimento de Fibroblastos/fisiologia , Pulmão/embriologia , Mesoderma/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Epitélio/embriologia , Fator 10 de Crescimento de Fibroblastos/biossíntese , Fator 10 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Transdução de Sinais/fisiologia , Proteínas com Domínio T/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/fisiologia
8.
Dev Biol ; 290(1): 177-88, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16375885

RESUMO

Vascular endothelial growth factor-A (VEGF-A) signaling directs both vasculogenesis and angiogenesis. However, the role of VEGF-A ligand signaling in the regulation of epithelial-mesenchymal interactions during early mouse lung morphogenesis remains incompletely characterized. Fetal liver kinase-1 (Flk-1) is a VEGF cognate receptor (VEGF-R2) expressed in the embryonic lung mesenchyme. VEGF-A, expressed in the epithelium, is a high affinity ligand for Flk-1. We have used both gain and loss of function approaches to investigate the role of this VEGF-A signaling pathway during lung morphogenesis. Herein, we demonstrate that exogenous VEGF 164, one of the 3 isoforms generated by alternative splicing of the Vegf-A gene, stimulates mouse embryonic lung branching morphogenesis in culture and increases the index of proliferation in both epithelium and mesenchyme. In addition, it induces differential gene and protein expression among several key lung morphogenetic genes, including up-regulation of BMP-4 and Sp-c expression as well as an increase in Flk-1-positive mesenchymal cells. Conversely, embryonic lung culture with an antisense oligodeoxynucleotide (ODN) to the Flk-1 receptor led to reduced epithelial branching, decreased epithelial and mesenchymal proliferation index as well as downregulating BMP-4 expression. These results demonstrate that the VEGF pathway is involved in driving epithelial to endothelial crosstalk in embryonic mouse lung morphogenesis.


Assuntos
Pulmão/embriologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Proliferação de Células , Endotélio/embriologia , Endotélio/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Mesoderma/metabolismo , Camundongos , Morfogênese , Técnicas de Cultura de Órgãos , Peptídeos/metabolismo , Proteína C Associada a Surfactante Pulmonar , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Dev Biol ; 282(2): 422-31, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15950607

RESUMO

Branching morphogenesis of many organs, including the embryonic lung, is a dynamic process in which growth factor mediated tyrosine kinase receptor activation is required, but must be tightly regulated to direct ramifications of the terminal branches. However, the specific regulators that modulate growth factor signaling downstream of the tyrosine kinase receptor remain to be determined. Herein, we demonstrate for the first time an important function for the intracellular protein tyrosine phosphatase Shp2 in directing embryonic lung epithelial morphogenesis. We show that Shp2 is specifically expressed in embryonic lung epithelial buds, and that loss of function by the suppression of Shp2 mRNA expression results in a 53% reduction in branching morphogenesis. Furthermore, by intra-tracheal microinjection of a catalytically inactive adenoviral Shp2 construct, we provide direct evidence that the catalytic activity of Shp2 is required for proper embryonic lung branch formation. We demonstrate that Shp2 activity is required for FGF10 induced endodermal budding. Furthermore, a loss of Shp2 catalytic activity in the embryonic lung was associated with a reduction in ERK phosphorylation and epithelial cell proliferation. However, epithelial cell differentiation was not affected. Our results show that the protein tyrosine phosphatase Shp2 plays an essential role in modulating growth factor mediated tyrosine kinase receptor activation in early embryonic lung branching morphogenesis.


Assuntos
Brônquios/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Morfogênese/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais/fisiologia , Adenoviridae , Análise de Variância , Animais , Western Blotting , Catálise , Primers do DNA , DNA Complementar/genética , Epitélio/fisiologia , Fator 10 de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos/metabolismo , Vetores Genéticos , Imuno-Histoquímica , Imunoprecipitação , Hibridização In Situ , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oligonucleotídeos Antissenso , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Pediatr Res ; 57(5 Pt 2): 26R-37R, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15817505

RESUMO

The "hard wiring" encoded within the genome that determines the emergence of the laryngotracheal groove and subsequently early lung branching morphogenesis is mediated by finely regulated, interactive growth factor signaling mechanisms that determine the automaticity of branching, interbranch length, stereotypy of branching, left-right asymmetry, and finally gas diffusion surface area. The extracellular matrix is an important regulator as well as a target for growth factor signaling in lung branching morphogenesis and alveolarization. Coordination not only of epithelial but also endothelial branching morphogenesis determines bronchial branching and the eventual alveolar-capillary interface. Improved prospects for lung protection, repair, regeneration, and engineering will depend on more detailed understanding of these processes. Herein, we concisely review the functionally integrated morphogenetic signaling network comprising the critical bone morphogenetic protein, fibroblast growth factor, Sonic hedgehog, transforming growth factor-beta, vascular endothelial growth factor, and Wnt signaling pathways that specify and drive early embryonic lung morphogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Pulmão/embriologia , Animais , Linhagem da Célula , Drosophila , Epitélio/metabolismo , Esôfago/patologia , Fatores de Crescimento de Fibroblastos/biossíntese , Proteínas Hedgehog , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Laringe/metabolismo , Ligantes , Pulmão/metabolismo , Pulmão/patologia , Modelos Biológicos , Mutação , Neovascularização Fisiológica , Peptídeos/química , Isoformas de Proteínas , Transdução de Sinais , Traqueia/metabolismo , Traqueia/patologia , Transativadores/biossíntese , Fator de Crescimento Transformador beta/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Proteínas Wnt
11.
Dev Biol ; 277(2): 316-31, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15617677

RESUMO

Members of the Dickkopf (Dkk) family of secreted proteins are potent inhibitors of Wnt/beta-catenin signaling. In this study we show that Dkk1, -2, and -3 are expressed distally in the epithelium, while Kremen1, the needed co-receptor, is expressed throughout the epithelium of the developing lung. Using TOPGAL mice [DasGupta, R., Fuchs, E., 1999. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557-4568] to monitor the Wnt pathway, we show that canonical Wnt signaling is dynamic in the developing lung and is active throughout the epithelium and in the proximal smooth muscle cells (SMC) until E12.5. However, from E13.5 onwards, TOPGAL activity is absent in the SMC and is markedly reduced in the distal epithelium coinciding with the onset of Dkk-1 expression in the distal epithelium. To determine the role of Wnt signaling in early lung development, E11.5 organ cultures were treated with recombinant DKK1. Treated lungs display impaired branching, characterized by failed cleft formation and enlarged terminal buds, and show decreased alpha-smooth muscle actin (alpha-SMA) expression as well as defects in the formation of the pulmonary vasculature. These defects coincide with a pattern of decreased fibronectin (FN) deposition. DKK1-induced morphogenetic defects can be mimicked by inhibition of FN and overcome by addition of exogenous FN, suggesting an involvement of FN in Wnt-regulated morphogenetic processes.


Assuntos
Epigênese Genética , Fibronectinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/embriologia , Camundongos/embriologia , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Actinas/metabolismo , Animais , Epitélio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Pulmão/metabolismo , Camundongos Transgênicos , Morfogênese , Músculo Liso/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Wnt
12.
Immunogenetics ; 56(9): 617-24, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15578261

RESUMO

HLA-G is a non-classical HLA class Ib molecule primarily expressed in trophoblast cells, and is thought to play a key role in the induction of materno-fetal tolerance during pregnancy. In addition, the HLA-G gene provides a suitable leader sequence peptide capable of binding to HLA-E. However, the existence of placentas homozygous for the HLA-G*0105N null allele suggests that HLA-G1 might not be essential for fetal survival. To investigate whether expression of the HLA-G*0105N allele supports HLA-E cell surface expression, we transfected the HLA-G*0105N gene into JAR trophoblast cells. Flow cytometry analysis showed that HLA-G*0105N-transfected cells express surface HLA-E to a similar extent as the unmutated HLA-G gene, whereas HLA-G1 cell surface expression was undetectable. Using the NKL cell line in a standard (51)Cr release assay, the HLA-E molecules were found to inhibit natural killer lysis, through a mechanism partially dependent on CD94/NKG2A-mediated recognition.


Assuntos
Antígenos CD/imunologia , Coriocarcinoma/imunologia , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Lectinas Tipo C/imunologia , Receptores Imunológicos/imunologia , Sequência de Aminoácidos , Antígenos CD/metabolismo , Sequência de Bases , Coriocarcinoma/metabolismo , Radioisótopos de Cromo/metabolismo , Antígenos HLA/genética , Antígenos HLA/imunologia , Antígenos HLA-G , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Lectinas Tipo C/metabolismo , Dados de Sequência Molecular , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Subfamília D de Receptores Semelhantes a Lectina de Células NK , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Células Matadoras Naturais , Transfecção , Células Tumorais Cultivadas , Antígenos HLA-E
13.
Respir Res ; 4: 5, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12818006

RESUMO

Lung morphogenesis is stereotypic, both for lobation and for the first several generations of airways, implying mechanistic control by a well conserved, genetically hardwired developmental program. This program is not only directed by transcriptional factors and peptide growth factor signaling, but also co-opts and is modulated by physical forces. Peptide growth factors signal within repeating epithelial-mesenchymal temporospatial patterns that constitute morphogenetic centers, automatically directing millions of repetitive events during both stereotypic branching and nonstereotypic branching as well as alveolar surface expansion phases of lung development. Transduction of peptide growth factor signaling within these centers is finely regulated at multiple levels. These may include ligand expression, proteolytic activation of latent ligand, ligand bioavailability, ligand binding proteins and receptor affinity and presentation, receptor complex assembly and kinase activation, phosphorylation and activation of adapter and messenger protein complexes as well as downstream events and cross-talk both inside and outside the nucleus. Herein we review the critical Sonic Hedgehog, Fibroblast Growth Factor, Bone Morphogenetic Protein, Vascular Endothelial Growth Factor and Transforming Growth Factorbeta signaling pathways and propose how they may be functionally coordinated within compound, highly regulated morphogenetic gradients that drive first stereotypic and then non-stereotypic, automatically repetitive, symmetrical as well as asymmetrical branching events in the lung.


Assuntos
Substâncias de Crescimento/metabolismo , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Transdução de Sinais , Envelhecimento/metabolismo , Animais , Embrião de Mamíferos/metabolismo , Embrião não Mamífero , Desenvolvimento Embrionário , Pulmão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...