Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30125623

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental disorder characterized by varying levels of hyperactivity, inattention, and impulsivity. Patients with ADHD are often classified as (1) predominantly hyperactive-impulsive, (2) predominantly inattentive, and (3) combined type. There is a growing interest in developing specific animal models that would recapitulate specific clinical forms of ADHD, with the goal of developing specific therapeutic strategies. In our previous study, we have identified Ataxin-7 (Atxn7) as a hyperactivity-associated gene. Here, we generated Atxn7 overexpressing (Atxn7 OE) mice to investigate whether the increased Atxn7 expression in the brain correlates with ADHD-like behaviors. Quantitative real-time polymerase chain reaction and immunofluorescence confirmed overexpression of the Atxn7 gene and protein in the prefrontal cortex (PFC) and striatum (STR) of the Atxn7 OE mice. The Atxn7 OE mice displayed hyperactivity and impulsivity, but not inattention. Interestingly, treatment with the ADHD drug, atomoxetine (3 mg/kg, intraperitoneal), attenuated ADHD-like behaviors and reduced Atxn7 gene expression in the PFC and STR of these mice. These findings suggest that Atxn7 plays a role in the pathophysiology of ADHD, and that the Atxn7 OE mice can be used as an animal model of the hyperactive-impulsive phenotype of this disorder. Although confirmatory studies are warranted, the present study provides valuable information regarding the potential genetic underpinnings of ADHD.


Assuntos
Inibidores da Captação Adrenérgica/uso terapêutico , Ataxina-7/metabolismo , Cloridrato de Atomoxetina/uso terapêutico , Hipercinese/tratamento farmacológico , Hipercinese/genética , Comportamento Impulsivo/efeitos dos fármacos , Animais , Ataxina-7/genética , Desvalorização pelo Atraso/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Comportamento Impulsivo/fisiologia , Locomoção/efeitos dos fármacos , Locomoção/genética , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Estatísticas não Paramétricas
2.
Neuroscience ; 390: 141-150, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30138648

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects 8-12% of children globally. Factor analyses have divided ADHD symptoms into two domains: inattention and a combination of hyperactivity and impulsivity. The identification of domain-specific genetic risk variants may help uncover potential genetic mechanisms underlying ADHD. We have previously identified that thyroid hormone-responsive (THRSP) gene expression is upregulated in spontaneously hypertensive rats (SHR/NCrl) and Wistar-Kyoto (WKY/NCrl) rats which exhibited inattention behavior. Thus, we established a line of THRSP overexpressing (OE) mice and assessed their behavior through an array of behavioral tests. The gene and protein overexpression of THRSP in the striatum (STR) was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The THRSP OE mice exhibited inattention in the novel-object recognition and Y-maze test, but not hyperactivity in the open-field test and impulsivity in the cliff-avoidance and delay-discounting task. We have also found that expression of dopamine-related genes (dopamine transporter, tyrosine hydroxylase, and dopamine D1 and D2 receptors) in the STR increased. Treatment with methylphenidate (5 mg/kg), the most commonly used medication for ADHD, improved attention and normalized expression levels of dopamine-related genes in THRSP OE mice. Our findings suggest that THRSP plays a role in the inattention phenotype of ADHD and that the THRSP OE mice may be used as an animal model to elucidate the genetic mechanisms of the disorder.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Atenção/fisiologia , Corpo Estriado/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Dopamina/genética , Inibidores da Captação de Dopamina/administração & dosagem , Feminino , Masculino , Metilfenidato/administração & dosagem , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/genética , Fenótipo , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
3.
Behav Brain Res ; 341: 122-128, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29288746

RESUMO

In recent years, there has been a marked increase in the use of recreational synthetic psychoactive substances, which is a cause of concern among healthcare providers and legal authorities. In particular, there have been reports on the misuse of 5-(2-aminopropyl)indole (5-API; 5-IT), a new synthetic drug, and of fatal and non-fatal intoxication. Despite these reports, little is known about its psychopharmacological effects and abuse potential. Here, we investigated the abuse potential of 5-IT by evaluating its rewarding and reinforcing effects through conditioned place preference (CPP) (1, 10, and 30 mg/kg, i.p.) in mice and self-administration test (0.1, 0.3, 1, and 3 mg/kg/inf., i.v.) in rats. We also examined whether 5-IT (1, 3, and 10 mg/kg, i.p.) induces locomotor sensitization in mice following a 7-day treatment and drug challenge. Then, we explored the effects of 5-IT (10 mg/kg, i.p.) on dopamine-related genes in the striatum, prefrontal cortex (PFC), and substantia nigra pars compacta (SNc)/ventral tegmental (VTA) of mice by quantitative real-time polymerase chain reaction. 5-IT produced CPP in mice but was not reliably self-administered by rats. 5-IT also induced locomotor sensitization following repeated administration and drug challenge. Moreover, 5-IT increased mRNA levels of dopamine D1 receptor in the striatum and PFC and dopamine transporter in the SNc/VTA of mice. These results indicate that 5-IT has psychostimulant and rewarding properties, which may be attributed to its ability to affect the dopaminergic system in the brain. These findings suggest that 5-IT poses a substantial risk for abuse and addiction in humans.


Assuntos
Dopaminérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Indóis/farmacologia , Psicotrópicos/farmacologia , Receptores de Dopamina D1/metabolismo , Recompensa , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia
4.
Mol Neurobiol ; 55(5): 3739-3754, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28534274

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a common, behavioral, and heterogeneous neurodevelopmental condition characterized by hyperactivity, impulsivity, and inattention. Symptoms of this disorder are managed by treatment with methylphenidate, amphetamine, and/or atomoxetine. The cause of ADHD is unknown, but substantial evidence indicates that this disorder has a significant genetic component. Transgenic animals have become an essential tool in uncovering the genetic factors underlying ADHD. Although they cannot accurately reflect the human condition, they can provide insights into the disorder that cannot be obtained from human studies due to various limitations. An ideal animal model of ADHD must have face (similarity in symptoms), predictive (similarity in response to treatment or medications), and construct (similarity in etiology or underlying pathophysiological mechanism) validity. As the exact etiology of ADHD remains unclear, the construct validity of animal models of ADHD would always be limited. The proposed transgenic animal models of ADHD have substantially increased and diversified over the years. In this paper, we compiled and explored the validity of proposed transgenic animal models of ADHD. Each of the reviewed transgenic animal models has strengths and limitations. Some fulfill most of the validity criteria of an animal model of ADHD and have been extensively used, while there are others that require further validation. Nevertheless, these transgenic animal models of ADHD have provided and will continue to provide valuable insights into the genetic underpinnings of this complex disorder.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Modelos Animais de Doenças , Comportamento Impulsivo , Animais , Animais Geneticamente Modificados , Comportamento Animal
5.
Behav Genet ; 47(5): 564-580, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28744604

RESUMO

Impulsivity, the predisposition to act prematurely without foresight, is associated with a number of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Identifying genetic underpinnings of impulsive behavior may help decipher the complex etiology and neurobiological factors of disorders marked by impulsivity. To identify potential genetic factors of impulsivity, we examined common differentially expressed genes (DEGs) in the prefrontal cortex (PFC) of adolescent SHR/NCrl and Wistar rats, which showed marked decrease in preference for the large but delayed reward, compared with WKY/NCrl rats, in the delay discounting task. Of these DEGs, we examined drug-responsive transcripts whose mRNA levels were altered following treatment (in SHR/NCrl and Wistar rats) with drugs that alleviate impulsivity, namely, the ADHD medications methylphenidate and atomoxetine. Prefrontal cortical genetic overlaps between SHR/NCrl and Wistar rats in comparison with WKY/NCrl included genes associated with transcription (e.g., Btg2, Fos, Nr4a2), synaptic plasticity (e.g., Arc, Homer2), and neuron apoptosis (Grik2, Nmnat1). Treatment with methylphenidate and/or atomoxetine increased choice of the large, delayed reward in SHR/NCrl and Wistar rats and changed, in varying degrees, mRNA levels of Nr4a2, Btg2, and Homer2, genes with previously described roles in neuropsychiatric disorders characterized by impulsivity. While further studies are required, we dissected potential genetic factors that may influence impulsivity by identifying genetic overlaps in the PFC of "impulsive" SHR/NCrl and Wistar rats. Notably, these are also drug-responsive transcripts which may be studied further as biomarkers to predict response to ADHD drugs, and as potential targets for the development of treatments to improve impulsivity.


Assuntos
Comportamento Impulsivo/efeitos dos fármacos , Comportamento Impulsivo/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Cloridrato de Atomoxetina/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/genética , Comportamento de Escolha , Modelos Animais de Doenças , Masculino , Metilfenidato/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Endogâmicos SHR/genética , Ratos Endogâmicos SHR/metabolismo , Ratos Endogâmicos WKY/genética , Ratos Endogâmicos WKY/metabolismo , Ratos Wistar/genética , Ratos Wistar/metabolismo
6.
J Ginseng Res ; 41(2): 201-208, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28413325

RESUMO

BACKGROUND: Panax vietnamensis Ha et Grushv. or Vietnamese ginseng (VG) is a recently discovered ginseng species. Studies on its chemical constituents have shown that VG is remarkably rich in ginseng saponins, particularly ocotillol saponins. However, the psychopharmacological effects of VG have not been characterized. Thus, in the present study we screened the psychopharmacological activities of VG in mice. METHODS: VG extract (VGE) was orally administered to mice at various dosages to evaluate its psychomotor (open-field and rota-rod tests), sedative-hypnotic (pentobarbital-induced sleeping test), antistress (cold swimming test), anxiolytic (elevated plus-maze test), and cognitive (Y-maze and passive-avoidance tests) effects. RESULTS: VGE treatment increased the spontaneous locomotor activity, enhanced the endurance to stress, reduced the anxiety-like behavior, and ameliorated the scopolamine-induced memory impairments in mice. In addition, VGE treatment did not alter the motor balance and coordination of mice and did not potentiate pentobarbital-induced sleep, indicating that VGE has no sedative-hypnotic effects. The effects of VGE were comparable to those of the Korean Red Ginseng extract. CONCLUSION: VG, like other ginseng products, has significant and potentially useful psychopharmacological effects. This includes, but is not limited to, psychomotor stimulation, anxiolytic, antistress, and memory enhancing effects.

7.
Biomol Ther (Seoul) ; 25(2): 122-129, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28173643

RESUMO

A diversity of synthetic cathinones has flooded the recreational drug marketplace worldwide. This variety is often a response to legal control actions for one specific compound (e.g. methcathinone) which has resulted in the emergence of closely related replacement. Based on recent trends, the nitrogen atom is one of the sites in the cathinone molecule being explored by designer type modifications. In this study, we designed and synthesized two new synthetic cathinones, (1) α-piperidinopropiophenone (PIPP) and (2) α-piperidinopentiothiophenone (PIVT), which have piperidine ring substituent on their nitrogen atom. Thereafter, we evaluated whether these two compounds have an abuse potential through the conditioned place preference (CPP) in mice and self-administration (SA) in rats. We also investigated whether the substances can induce locomotor sensitization in mice following 7 days daily injection and challenge. qRT-PCR analyses were conducted to determine their effects on dopamine-related genes in the striatum. PIPP (10 and 30 mg/kg) induced CPP in mice, but not PIVT. However, both synthetic cathinones were not self-administered by the rats and did not induce locomotor sensitization in mice. qRT-PCR analyses showed that PIPP, but not PIVT, reduced dopamine transporter gene expression in the striatum. These data indicate that PIPP, but not PIVT, has rewarding effects, which may be attributed to its ability to affect dopamine transporter gene expression. Altogether, this study suggests that PIPP may have abuse potential. Careful monitoring of this type of cathinone and related drugs are advocated.

8.
Pharmacol Biochem Behav ; 153: 160-167, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28063946

RESUMO

The recreational use of synthetic cathinones has dramatically increased in recent years, which is partly due to easy accessibility and ability of synthetic cathinones to exert rewarding effects similar to cocaine and methamphetamine. Many synthetic cathinones have already been scheduled in several countries; however, novel and diverse synthetic cathinones are emerging at an unprecedented rate, often outpacing regulatory processes. Recently, designer modifications of the basic cathinone molecule are usually performed on the alpha-carbon position. In this study, we designed and synthesized two novel synthetic cathinones with substituents on alpha-carbon position, [1] 2-cyclohexyl-2-(methylamino)-1-phenylethanone (MACHP), and [2] 2-(methylamino)-1-phenyloctan-1-one (MAOP). Then, we evaluated their rewarding and reinforcing effects through the conditioned place preference (CPP) in mice and self-administration (SA) test in rats. Locomotor activity was also assessed in mice during daily MACHP or MAOP treatment for 7days and drug challenge. qRT-PCR analyses were conducted to determine their effects on dopamine-related genes in the striatum. MACHP and MAOP produced CPP at 10 and 30mg/kg. In the SA test, MACHP (1mg/kg/infusion), but not MAOP, was self-administered. Both MACHP and MAOP induced locomotor sensitization in mice. qRT-PCR analyses showed that MACHP and MAOP reduced dopamine transporter gene expression in the striatum. These data indicate that MACHP and MAOP may have rewarding properties, which might be attributed to their ability to affect the dopaminergic activity. These findings may be useful in predicting the abuse potential and hasten the regulation of future cathinone entities with similar modifications.


Assuntos
Alcaloides/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias , Animais , Condicionamento Psicológico/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recompensa , Autoadministração
9.
Behav Brain Res ; 317: 494-501, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27737791

RESUMO

The recreational use of synthetic cathinones has grown rapidly which prompted concerns from legal authorities and health care providers. However, in response to legislative regulations, synthesis of novel synthetic cathinones by introducing substituents in cathinone molecule has dramatically increased the diversity of these substances. Based on current trends, the aromatic ring is one of the popular sites in cathinone molecule being explored by designer-type modifications. In this study, we designed and synthesized a novel synthetic cathinone, 2-(methylamino)-1-(naphthalen-2-yl) propan-1-one (BMAPN), which has a naphthalene substituent on the aromatic ring. Thereafter, we determined whether BMAPN has rewarding and reinforcing effects through the conditioned place preference (CPP) test in mice and self-administration (SA) paradigm in rats. Locomotor sensitization was also assessed in mice during daily BMAPN treatment for 7days and drug challenge. Furthermore, we investigated the effects on BMAPN on dopamine-related genes in the striatum of mice using quantitative real-time polymerase chain reaction (qRT-PCR). BMAPN induced CPP at 10 and 30mg/kg and was modestly self-administered at 0.3mg/kg/infusion. Repeated BMAPN (30mg/kg) administration also produced locomotor sensitization. qRT-PCR analyses revealed decreased dopamine transporter and increased dopamine receptor D2 gene expression in the striatum of the BMAPN-treated mice. These data indicate that BMAPN has rewarding and reinforcing properties, which might be due to its effects on dopamine-related genes. The present study suggests that these findings may be useful in predicting abuse potential of future cathinone entities with aromatic ring substitutions.


Assuntos
Alcaloides/farmacologia , Condicionamento Operante/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Recompensa , Alcaloides/química , Animais , Dopamina/genética , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Locomoção/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Metanfetamina/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Autoadministração , Trítio , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Int J Dev Neurosci ; 55: 49-55, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27647343

RESUMO

Adolescence is a critical period for cigarette smoking. Studies have shown that adolescent smokers are more likely to become addicted, are less likely to quit, and are more prone to relapse. In the present study, we examined the affective symptoms experienced by adolescents during withdrawal from cigarette smoke exposure. Towards this goal, adolescent male rats were repeatedly exposed to cigarette smoke, through an automated smoking machine, for 14 days. Then, cigarette smoke exposure was discontinued to induce spontaneous withdrawal. During the withdrawal period, anxiety-like behavior (elevated plus-maze test), locomotor activity (open-field test), and learning and memory (passive-avoidance test) were evaluated. These behavioral evaluations were conducted during the first, third, seventh, and fourteenth day of withdrawal. For comparison, parallel experiments were performed in adult rats. We found that adolescent rats exposed to cigarette smoke experiences increased anxiety-like behavior and locomotor activity during withdrawal relative to control rats. Learning and memory processes were undisturbed. On the other hand, adult rats exposed to cigarette smoke did not show any statistically significant behavioral alteration during withdrawal. These results are consistent with the notion that adolescents are differentially sensitive to the withdrawal effects of cigarette smoking. This sensitivity might be a factor why adolescent smokers have difficulty quitting and are more prone to relapse.


Assuntos
Envelhecimento , Ansiedade/etiologia , Nicotina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Tabagismo/complicações , Envelhecimento/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva/efeitos dos fármacos , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tabagismo/etiologia
11.
Behav Brain Res ; 313: 184-190, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27401107

RESUMO

Studies have shown that enzymatic hydrolysis of casein, the primary protein component of cow's milk, produces peptides with various biological activities, and some of these peptides may have sleep-promoting effects. In the present study, we evaluated the sedative and sleep-promoting effects of bovine αS1-casein tryptic hydrolysate (CH), containing a decapeptide αS1-casein known as alpha-casozepine. CH was orally administered to ICR mice at various concentrations (75, 150, 300, or 500mg/kg). An hour after administration, assessment of its sedative (open-field and rota-rod tests) and sleep-potentiating effects (pentobarbital-induced sleeping test and EEG monitoring) were conducted. Although a trend can be observed, CH treatment did not significantly alter the spontaneous locomotor activity and motor function of mice in the open-field and rota-rod tests. On the other hand, CH (150mg/kg, respectively) enhanced the sleep induced by pentobarbital sodium in mice. It also promoted slow-wave (delta) EEG activity in rats; a pattern indicative of sleep or relaxation. These behavioral results indicate that CH has sleep-promoting effects, but no or has minimal sedative effects. To elucidate the probable mechanism behind the effects of CH, we examined its action on intracellular chloride ion influx in cultured human neuroblastoma cells. CH dose-dependently increased chloride ion influx, which was blocked by co-administration of bicuculline, a competitive GABAA receptor antagonist. Taken together, the results of the present study suggest that CH has sleep-promoting properties which are probably mediated through the GABAA receptor-chloride ion channel complex.


Assuntos
Comportamento Animal/efeitos dos fármacos , Caseínas/farmacologia , Pentobarbital/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Medicamentos Indutores do Sono/farmacologia , Sono/efeitos dos fármacos , Animais , Ansiolíticos/farmacologia , Hipnóticos e Sedativos/farmacologia , Masculino , Camundongos Endogâmicos ICR , Leite , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo
12.
Physiol Behav ; 155: 30-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26656767

RESUMO

Attention-deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder, characterized by symptoms of hyperactivity, inattention, and impulsivity. It is commonly treated with psychostimulants that typically begins during childhood and lasts for an extended period of time. However, there are concerns regarding the consequences of chronic psychostimulant treatment; thus, there is a growing search for an alternative management for ADHD. One non-pharmacological management that is gaining much interest is environmental enrichment. Here, we investigated the effects of rearing in an enriched environment (EE) on the expression of ADHD-like symptoms in the Spontaneously Hypertensive Rats (SHRs), an animal model of ADHD. SHRs were reared in EE or standard environment (SE) from post-natal day (PND) 21 until PND 49. Thereafter, behavioral tests that measure hyperactivity (open field test [OFT]), inattention (Y-maze task), and impulsivity (delay discounting task) were conducted. Additionally, electroencephalography (EEG) was employed to assess the effects of EE on rat's brain activity. Wistar-Kyoto (WKY) rats, the normotensive counterpart of the SHRs, were used to determine whether the effects of EE were specific to a particular genetic background. EE improved the performance of the SHRs and WKY rats in the OFT and Y-maze task, but not the delay discounting task. Interestingly, EE induced significant EEG changes in WKY rats, but not in the SHRs. These findings show that rearing environment may play a role in the expression of ADHD-like symptoms in the SHRs and that EE may be considered as a putative complementary approach in managing ADHD symptoms.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Atenção/fisiologia , Encéfalo/fisiopatologia , Meio Ambiente , Atividade Motora/fisiologia , Animais , Estudos de Coortes , Desvalorização pelo Atraso/fisiologia , Modelos Animais de Doenças , Eletrocorticografia , Abrigo para Animais , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
13.
J Med Food ; 18(11): 1255-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26501383

RESUMO

Milk has long been known and used to promote sleep. The sleep-promoting effect of milk has been attributed to its psychological associations (i.e., the memory of a mother giving milk at bedtime) and its rich store of sleep-promoting constituents (e.g., tryptophan). Studies have shown that milk harvested at night (Night milk) contains exceptionally high amounts of tryptophan and melatonin. In the present study, we evaluated the psychopharmacological properties of Night milk, particularly its probable sleep-promoting/enhancing, and anxiolytic effects. Night milk was orally administered to ICR mice at various concentrations (100, 200, or 300 mg/kg). An hour after administration, assessment of its sedative (open-field and rotarod tests) and sedative sleep-potentiating effects (pentobarbital-induced sleeping test) was conducted. For comparison, the effects of Day milk (daytime milking) were also assessed. In addition, the effects of Night milk on anxiety behavior (elevated plus maze [EPM] test) and electroencephalographic (EEG) waves were evaluated. Night milk-treated animals exhibited decreased spontaneous locomotion (open-field test) and impaired motor balance and coordination (rotarod test). Furthermore, Night milk shortened the sleep onset and prolonged the sleep duration induced by pentobarbital sodium. These effects were comparable to that of diazepam. In addition, Night milk significantly increased the percentage of time spent and entries into the open arms of the EPM, indicating that it also has anxiolytic effects. No significant changes in EEG waves were observed. Altogether, these findings suggest that Night milk is a promising natural aid for sleep- and anxiety-related disturbances.


Assuntos
Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Ritmo Circadiano , Hipnóticos e Sedativos/uso terapêutico , Leite/química , Sono/efeitos dos fármacos , Animais , Ansiolíticos/farmacologia , Comportamento Animal , Bovinos , Hipnóticos e Sedativos/farmacologia , Masculino , Aprendizagem em Labirinto , Melatonina/farmacologia , Melatonina/uso terapêutico , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Pentobarbital/farmacologia , Triptofano/farmacologia , Triptofano/uso terapêutico
14.
Eur J Pharmacol ; 766: 135-41, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26450088

RESUMO

AM281 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) is a new synthetic cannabinoid CB1 receptor antagonist. Similar to other cannabinoid antagonists, AM281 has been suggested to have therapeutic indications. However, recent reports have suggested that cannabinoid CB1 receptor antagonists may share similar behavioral effects with other drugs of abuse such as cocaine and amphetamine. These reports cast doubts on the safety profile of AM281. Thus, in the present study we evaluated the abuse potential (rewarding and reinforcing effects) of AM281 through two of the most widely used animal models for assessing the abuse potential of drugs: the conditioned place preference (CPP) and self-administration (SA) tests. Experiments were performed in Sprague-Dawley rats in various dosages [CPP (0.1, 0.5 or 2.5mg/kg), SA (0.005, 0.025 or 0.1mg/kg/infusion)]. We also delved into the consequences of repeated drug exposure on the subsequent response to the drug. Thus, parallel experiments were carried out in rats pretreated with AM281 for 7 or 14 days. Our findings indicated that AM281, at any dose, did not induce CPP and SA in drug-naïve rats. Interestingly, significant CPP (0.5mg/kg of AM281), but not SA, was observed in 14 days pretreated rats. These observations suggest that AM281 per se has no or minimal rewarding and reinforcing properties, but alterations in neuronal functions and behavior due to repeated AM281 exposure may contribute in part to the abuse potential of this drug. In view of this finding, we advocate the careful use, monitoring, and dispensation of AM281.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Morfolinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Reforço Psicológico , Autoadministração , Transtornos Relacionados ao Uso de Substâncias
15.
Neuropharmacology ; 99: 9-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26116818

RESUMO

Adolescence is a period of enhanced vulnerability to the motivational properties of tobacco/cigarette smoking. Several studies have suggested that smoking initiation during this period will more likely lead to long-lasting cigarette or nicotine addiction. In the present study, we investigated the influences of adolescent cigarette smoke or nicotine exposure on the rewarding effects of nicotine, particularly whether these influences persist even after a long period of abstinence. Towards this, adolescent and adult Sprague-Dawley rats were repeatedly exposed to cigarette smoke or nicotine, for 14 days, and then were subjected to a 1-month abstinence period. Thereafter, the rewarding effects of nicotine were evaluated through the conditioned place preference (CPP) and self-administration (SA) tests. Even after a 1-month abstinence period, rats pre-exposed to either nicotine or cigarette smoke demonstrated enhanced CPP for the higher dose (0.6 mg/kg) of nicotine. Notably, cigarette smoke-preexposed adolescent rats, now adults, showed CPP for both 0.2 and 0.6 mg/kg dose of nicotine. Moreover, only these rats (pre-exposed to cigarette smoke during adolescence) showed significant acquisition and maintenance of nicotine (0.03 mg/kg/infusion) SA. These results suggest that cigarette smoke exposure during adolescence enhances sensitivity to the rewarding effects of nicotine in adulthood, even after a long period of abstinence. This may be a factor in the high rates of nicotine addiction and dependence observed in smokers who started during adolescence. More importantly, our findings highlight the enduring consequences of adolescent-onset cigarette smoking and the need to protect this vulnerable population.


Assuntos
Envelhecimento/efeitos dos fármacos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Recompensa , Poluição por Fumaça de Tabaco/efeitos adversos , Envelhecimento/psicologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Motivação , Ratos Sprague-Dawley , Autoadministração , Comportamento Espacial/efeitos dos fármacos , Tabagismo/etiologia , Tabagismo/psicologia
16.
Am J Chin Med ; 43(4): 667-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26119953

RESUMO

The Artemisia group of plants has long been used as a traditional remedy for various conditions. The present study assessed the sleep-promoting (sedative-hypnotic) effects of Artemisia capillaris Thunberg (A. capillaris), and elucidated a possible mechanism behind its effect. ICR mice were given A. capillaris extract (oral) at different dosages (50, 100, 200, 300, or 400 mg/kg), distilled water (oral; control), or diazepam (intraperitoneal; reference drug). One hour after administration, locomotion (open-field test) and motor coordination (rota-rod test) were assessed. The extract's effect on pentobarbital-induced sleep was also evaluated. Additionally, electroencephalographic (EEG) recordings were measured in rats. To evaluate a possible mechanism behind its effects, changes in chloride ( Cl (-)) ion influx were measured in human neuroblastoma cells. As compared to the control group, mice treated with A. capillaris demonstrated significantly decreased locomotor activity and impaired motor balance and coordination. The extract also shortened the onset and lengthened the duration of sleep induced by pentobarbital sodium. These effects were comparable to that induced by diazepam. Furthermore, A. capillaris-treated rats showed increased delta and decreased alpha EEG waves; an electroencephalographic pattern indicative of relaxation or sedation. In neuroblastoma cells, the extract dose-dependently increased Cl (-) ion influx, which was blocked by co-administration of bicuculline, a GABAA receptor competitive antagonist, suggesting that its effects are mediated through the GABAA receptor- Cl (-) ion channel complex. Altogether, the results of the present study demonstrate that A. capillaris possesses potent sedative-hypnotic effects, which are probably mediated through potentiation of the GABAA receptor- Cl (-) ion channel complex.


Assuntos
Artemisia/química , Hipnóticos e Sedativos , Extratos Vegetais/farmacologia , Receptores de GABA-A/metabolismo , Administração Oral , Animais , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Relação Dose-Resposta a Droga , Eletroencefalografia/efeitos dos fármacos , Humanos , Locomoção/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Neuroblastoma/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Sono/efeitos dos fármacos , Estimulação Química , Células Tumorais Cultivadas
17.
Pharmacol Biochem Behav ; 133: 31-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25792291

RESUMO

Methoxetamine (MXE) is an N-methyl-d-aspartate (NMDA) receptor antagonist that is chemically and pharmacologically similar to ketamine. Recently, there have been many reports regarding its use/misuse in humans which have resulted in serious or even fatal outcomes. Despite these reports, MXE is not controlled or regulated in many countries which may be partly due to the lack of scientific evidence regarding its abuse potential. Thus, in the present study we evaluated the abuse potential (rewarding and reinforcing effects) of MXE through the conditioned place preference (CPP) and self-administration (SA) tests in Sprague-Dawley rats. In addition, locomotor activity during the conditioning phase of the CPP was also analyzed. Ketamine was used as a reference drug. MXE (2.5 and 5mg/kg) induced significant CPP in rats, an effect comparable to that of ketamine (5mg/kg). Interestingly, MXE did not produce any locomotor alterations while ketamine decreased the locomotor activity of rats. In the SA test, rats showed modest self-administration of MXE (0.25, 0.5, 1.0mg/kg/infusion), while ketamine (0.5mg/kg/infusion) was robustly self-administered. These results demonstrate that MXE, similar to ketamine, has rewarding and reinforcing effects in rats. The present study strongly suggests that MXE has a potential for human abuse. In addition, the discrepant effects of MXE and ketamine on locomotor activity and rate of self-administration propose that the psychopharmacological effects of these drugs may diverge in some aspects. More importantly, this study advocates the careful monitoring and prompt regulation of MXE and its related substances.


Assuntos
Condicionamento Psicológico/efeitos dos fármacos , Cicloexanonas/farmacologia , Cicloexilaminas/farmacologia , Ketamina/farmacologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , Animais , Relação Dose-Resposta a Droga , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Autoadministração
18.
Am J Drug Alcohol Abuse ; 40(4): 321-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24950106

RESUMO

BACKGROUND: Propofol and the tiletamine-zolazepam combination are anesthetics with both sedative-hypnotic and hallucinogenic effects. In South Korea, propofol is controlled while the tiletamine-zolazepam combination is not. Thus, there is a possibility that this drug combination might be used as a substitute drug by propofol-abusers. OBJECTIVE: In the present study we evaluated whether repeated pre-exposure to propofol predisposes to the use/abuse of the tiletamine-zolazepam combination. METHODS: Rats (8-10 animals/group) were pre-treated with saline (control) or propofol at different dosages (10, 30, 60 mg/kg, i.p.), for 14 days, then conditioned place preference (CPP) and self-administration (SA) for the tiletamine-zolazepam combination were evaluated. RESULTS: Rats pretreated with saline exhibited neither CPP nor SA for the tiletamine-zolazepam combination. On the other hand, rats pretreated with propofol, in all dosages, demonstrated significant CPP and SA for the tiletamine-zolazepam combination. CONCLUSION: These results suggest that tiletamine-zolazepam combinations might be used as a "substitute drug" by abusers of propofol. The careful use, dispensation, and monitoring of tiletamine-zolazepam combinations are advocated.


Assuntos
Anestésicos/farmacologia , Aprendizagem por Associação/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Propofol/farmacologia , Tiletamina/administração & dosagem , Zolazepam/administração & dosagem , Anestésicos/administração & dosagem , Animais , Combinação de Medicamentos , Masculino , Ratos , Ratos Sprague-Dawley , Autoadministração
19.
Am J Drug Alcohol Abuse ; 40(1): 75-81, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24266614

RESUMO

BACKGROUND: Ethanol (EtOH) is one of the oldest recreational substances known to man, primarily taken because it induces a sense of well-being (euphoric effects) and relaxation (anxiolytic effects). EtOH use entails various negative consequences. Of particular interest are EtOH-induced psychomotor alterations, because of its immediate manifestation and adverse consequences. Rosa roxburghii (RR), a wild plant of Southwest China, has gained attention on account of its numerous beneficial effects on the immune, nervous, and cardiovascular systems. OBJECTIVE: In the present study we assessed the effects of Rosa roxburghii (RR) on EtOH-induced psychomotor alterations in rats. METHODS: Sprague Dawley rats were orally administered distilled water (control group) or ethanol (4 g/kg BW) (EtOH-group) to induce psychomotor alterations. RR extract (25, 50, and 100 mg/kg, p.o.) was administered 30 min before EtOH treatment (RR-group). EtOH-induced psychomotor alterations were evaluated in the open-field, accelerating rotarod, hanging wire, and cold swimming tests. Behavioral evaluation and hematological analysis (EtOH and acetaldehyde concentration) were done at 1, 2, 4 and 8 hours after EtOH administration. RESULTS: The EtOH group showed psychomotor alterations as compared with the control group. These EtOH-induced psychomotor alterations were directly related to the rise in blood ethanol and acetaldehyde concentrations. Pre-treatment of RR significantly improved EtOH-induced psychomotor alterations on open-field, accelerating rotarod, hanging wire, and cold swimming tests. These improvements in psychomotor performance coincided with the decreased blood ethanol and acetaldehyde levels observed in the RR-treated group. CONCLUSION: These results suggest that RR has ameliorating effects against EtOH-induced psychomotor alterations.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Etanol/antagonistas & inibidores , Etanol/farmacologia , Destreza Motora/efeitos dos fármacos , Resistência Física/efeitos dos fármacos , Rosa , Acetaldeído/sangue , Animais , Relação Dose-Resposta a Droga , Etanol/sangue , Comportamento Exploratório/efeitos dos fármacos , Masculino , Ratos , Teste de Desempenho do Rota-Rod
20.
Pharmacol Biochem Behav ; 110: 231-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23916424

RESUMO

Zoletil® is an equal amount combination of the NMDA receptor antagonist, tiletamine, and the benzodiazepine, zolazepam, usually used as a veterinary anesthetic. Previous studies have shown that pre-exposure to Zoletil® and other psychoactive drugs (e.g. ketamine, diazepam) plays a significant role in the abuse liability of the compound. However, these studies were only focused on illicit psychoactive drugs and not on the more widely used licit psychoactive substances. Thus, the goal of the present work is to investigate whether pre-exposure to the three most commonly used licit psychoactive substances (caffeine, nicotine, and ethanol) affects the rewarding and reinforcing effects of Zoletil®. Rats were pretreated with caffeine (1.25 or 2.5 mg/kg), nicotine (125 or 250 µg/kg), ethanol (0.5, 2, or 4 g/kg), or saline (1 ml/kg) for 14 days, and evaluated for subsequent Zoletil® place preference (2.5 mg/kg) and self-administration (250 µg/kg). Zoletil® produced neither place preference nor self-administration in saline-pretreated rats. Pre-exposure to caffeine or nicotine does not have significant effects on Zoletil®'s abuse potential. However, pretreatment of ethanol significantly produced Zoletil® place preference and self-administration. These results suggest that individuals who are exposed to ethanol may have a high propensity to use/abuse Zoletil®. More importantly, the present result advocates the careful monitoring on the use and dispensation of Zoletil® or related substances.


Assuntos
Anestésicos/farmacologia , Condicionamento Operante , Etanol/farmacologia , Tiletamina/farmacologia , Zolazepam/farmacologia , Anestésicos/administração & dosagem , Animais , Benzodiazepinas/farmacologia , Cafeína/farmacologia , Combinação de Medicamentos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Locomoção/efeitos dos fármacos , Nicotina/farmacologia , Ratos , Ratos Sprague-Dawley , Autoadministração , Tiletamina/administração & dosagem , Zolazepam/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...