Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(4): e2104091, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766719

RESUMO

Incorporating boride nanocrystals could significantly impact the mechanical properties of aluminum alloys. Molten salts synthesis offers opportunities to fabricate superhard boride nanoparticles, which can sustain the harsh conditions during the liquid-phase design of metallic nanocomposites. Here hafnium diboride-aluminum nanocomposites are unveiled from molten salt-derived HfB2 nanoparticles sequentially dispersed in aluminum by ultrasound treatment. The structure and size of the nanocrystals are retained in the final nanocomposites, supporting their high chemical stability. Semicoherent interfaces between the nanoparticles and the matrix are then evidenced by TEM, suggesting that the nanocrystals could promote heterogeneous nucleation of Al and then limit the Al grain size to ≈20 µm. Nanoindentation measurements reveal significant grain boundary strengthening and grain refinement effects. It is finally shown that HfB2 nanoparticles also enable a decrease in matrix grain size and an increase in the hardness of the AlSi7 Cu0.5 Mg0.3 alloy. These proof-of-concept materials are paving the way to light-weight Al matrix nanocomposites doped by molten-salt synthesized nanoparticles.

2.
Nat Commun ; 9(1): 593, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426947

RESUMO

Most existing methods for additive manufacturing (AM) of metals are inherently limited to ~20-50 µm resolution, which makes them untenable for generating complex 3D-printed metallic structures with smaller features. We developed a lithography-based process to create complex 3D nano-architected metals with ~100 nm resolution. We first synthesize hybrid organic-inorganic materials that contain Ni clusters to produce a metal-rich photoresist, then use two-photon lithography to sculpt 3D polymer scaffolds, and pyrolyze them to volatilize the organics, which produces a >90 wt% Ni-containing architecture. We demonstrate nanolattices with octet geometries, 2 µm unit cells and 300-400-nm diameter beams made of 20-nm grained nanocrystalline, nanoporous Ni. Nanomechanical experiments reveal their specific strength to be 2.1-7.2 MPa g-1 cm3, which is comparable to lattice architectures fabricated using existing metal AM processes. This work demonstrates an efficient pathway to 3D-print micro-architected and nano-architected metals with sub-micron resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...