Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421803

RESUMO

The structure of the diol from which an arylboronic ester is derived dramatically influences the rate of transmetalation in the Suzuki-Miyaura cross-coupling reaction. Some esters undergo transmetalation more than 20 times faster than the parent arylboronic acid. Herein, investigations into the influence of arylboronic ester ring size and steric properties on the mechanism of transmetalation in the Suzuki-Miyaura reaction are described. Both factors impact the propensity of an arylboronic ester to bind to a dimeric palladium hydroxide complex. The reaction of hindered arylboronic esters derived from 1,2-diols (1,3,2-dioxaborolanes) with palladium hydroxide dimers to form a complex incorporating a Pd-O-B linkage is thermodynamically favorable, but the barrier to coordination is often higher than the barrier to arene transfer. In contrast, the analogous reaction between arylboronic esters derived from 1,3-diols (1,3,2-dioxaborinanes) and palladium hydroxide dimers is thermodynamically unfavorable, as 1,3,2-dioxaborinanes exhibit decreased electrophilicity compared to esters derived from 1,2- or 1,4-diols. These factors also influence the barrier of the arene transfer step, and in many cases, arylboronic esters that do not easily form Pd-O-B linked complexes undergo transmetalation faster than those that do because of hyperconjugative stabilization of the arene transfer transition state.

2.
Science ; 381(6662): 1079-1085, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676958

RESUMO

Copper complexes are widely used in the synthesis of fine chemicals and materials to catalyze couplings of heteroatom nucleophiles with aryl halides. We show that cross-couplings catalyzed by some of the most active catalysts occur by a mechanism not previously considered. Copper(II) [Cu(II)] complexes of oxalamide ligands catalyze Ullmann coupling to form the C-O bond in aryl ethers by concerted oxidative addition of an aryl halide to Cu(II) to form a high-valent species that is stabilized by radical character on the oxalamide ligand. This mechanism diverges from those involving Cu(I) and Cu(III) intermediates that have been posited for other Ullmann-type couplings. The stability of the Cu(II) state leads to high turnover numbers, >1000 for the coupling of phenoxide with aryl chloride electrophiles, as well as an ability to run the reactions in air.

3.
J Am Chem Soc ; 144(10): 4345-4364, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35230833

RESUMO

Previous studies have shown that the critical transmetalation step in the Suzuki-Miyaura cross-coupling proceeds through a mechanism wherein an arylpalladium hydroxide complex reacts with an aryl boronic acid, termed the oxo-palladium pathway. Moreover, these same studies have established that the reaction between an aryl boronate and an arylpalladium halide complex (the boronate pathway) is prohibitively slow. Herein, studies on isolated intermediates, along with kinetic analysis, have demonstrated that the Suzuki-Miyaura reaction promoted by potassium trimethylsilanolate (TMSOK) proceeds through the boronate pathway, in contrast with other, established systems. Furthermore, an unprecedented, binuclear palladium(I) complex containing a µ-phenyl bridging ligand was characterized by NMR spectroscopy, mass spectrometry, and computational methods. Density functional theory (DFT) calculations suggest that the binuclear complex exhibits an open-shell ground electronic state, and reaction kinetics implicate the complex in the catalytic cycle. These results expand the breadth of potential mechanisms by which the Suzuki-Miyaura reaction can occur, and the novel binuclear palladium complex discovered has broad implications for palladium-mediated cross-coupling reactions of aryl halides.


Assuntos
Paládio , Compostos de Trimetilsilil , Catálise , Cinética , Paládio/química
4.
J Am Chem Soc ; 143(34): 13845-13853, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415757

RESUMO

Reaction conditions have been developed for refractory heteroaryl-heteroaryl Suzuki-Miyaura cross-couplings. The reported method employs neopentyl heteroarylboronic esters as nucleophiles, heteroaryl bromides and chlorides as the electrophiles, and the soluble base potassium trimethylsilanolate (TMSOK) under anhydrous conditions. The addition of trimethyl borate enhances reaction rates by several mechanisms, including (1) solubilization of in situ-generated boronate complexes, (2) preventing catalyst poisoning by the heteroatomic units, and (3) buffering the inhibitory effect of excess TMSOK. The use of this method enables cross-coupling of diverse reaction partners including a broad range of π-rich and π-deficient heteroaryl boronic esters and heteroaryl bromides. Reactions proceed in good yields and short reaction times (3 h or less).


Assuntos
Boratos/química , Compostos Heterocíclicos/química , Brometos/química , Catálise , Cloretos/química , Compostos Heterocíclicos/síntese química , Ligantes , Paládio/química , Solubilidade , Compostos de Trimetilsilil/química
5.
Adv Synth Catal ; 362(2): 417-423, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-32165875

RESUMO

Aromatic and heterocyclic functionality are ubiquitous in pharmaceuticals. Herein, we disclose a new Mn(PDP)catalyst system using chloroacetic acid additive capable of chemoselectively oxidizing remote tertiary C(sp 3)-H bonds in the presence of a broad range of aromatic and heterocyclic moieties. Although catalyst loadings can be lowered to 0.1 mol% under a Mn(PDP)/acetic acid system for aromatic and non-basic nitrogen heterocycle substrates, the Mn(PDP)/chloroacetic acid system generally affords 10-15% higher isolated yields on these substrates and is uniquely effective for remote C(sp 3)-H hydroxylations in substrates housing basic nitrogen heterocycles. The demonstrated ability to perform Mn(PDP)/chloroacetic acid C(sp 3)-H oxidations in pharmaceutically relevant complex molecules on multi-gram scales will facilitate drug discovery processes via late-stage functionalization.

6.
ACS Catal ; 10(1): 73-80, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33585070

RESUMO

Herein, a mild and operationally simple method for the Suzuki-Miyaura cross-coupling of boronic esters is described. Central to this advance is the use of the organic-soluble base, potassium trimethylsilanolate, which allows for a homogeneous, anhydrous cross-coupling. The coupling proceeds at a rapid rate, often furnishing products in quantitative yield in less than 5 min. By applying this method, a >10-fold decrease in reaction time was observed for three published reactions which required >48 h to reach satisfactory conversion.

8.
J Am Chem Soc ; 141(16): 6473-6478, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30964670

RESUMO

Carbene polymerization provides polyolefins that cannot be readily prepared from olefin monomers; however, controlled and living carbene polymerization has been a long-standing challenge. Here we report a new class of initiators, (π-allyl)palladium carboxylate dimers, which polymerize ethyl diazoacetate, a carbene precursor in a controlled and quasi-living manner, with nearly quantitative yields, degrees of polymerization >100, molecular weight dispersities 1.2-1.4, and well-defined, diversifiable chain ends. This method also provides block copolycarbenes that undergo microphase segregation. Experimental and theoretical mechanistic analysis supports a new dinuclear mechanism for this process.


Assuntos
Teoria da Densidade Funcional , Metano/análogos & derivados , Metano/síntese química , Metano/química , Estrutura Molecular , Polimerização
9.
J Am Chem Soc ; 140(12): 4401-4416, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29543441

RESUMO

The Suzuki-Miyaura reaction is the most practiced palladium-catalyzed, cross-coupling reaction because of its broad applicability, low toxicity of the metal (B), and the wide variety of commercially available boron substrates. A wide variety of boronic acids and esters, each with different properties, have been developed for this process. Despite the popularity of the Suzuki-Miyaura reaction, the precise manner in which the organic fragment is transferred from boron to palladium has remained elusive for these reagents. Herein, we report the observation and characterization of pretransmetalation intermediates generated from a variety of commonly employed boronic esters. The ability to confirm the intermediacy of pretransmetalation intermediates provided the opportunity to clarify mechanistic aspects of the transfer of the organic moiety from boron to palladium in the key transmetalation step. A series of structural, kinetic, and computational investigations revealed that boronic esters can transmetalate directly without prior hydrolysis. Furthermore, depending on the boronic ester employed, significant rate enhancements for the transfer of the B-aryl groups were observed. Overall, two critical features were identified that enable the transfer of the organic fragment from boron to palladium: (1) the ability to create an empty coordination site on the palladium atom and (2) the nucleophilic character of the ipso carbon bound to boron. Both of these features ultimately relate to the electron density of the oxygen atoms in the boronic ester.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...