Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 8(83): eadd1153, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37146128

RESUMO

The tumor-associated vasculature imposes major structural and biochemical barriers to the infiltration of effector T cells and effective tumor control. Correlations between stimulator of interferon genes (STING) pathway activation and spontaneous T cell infiltration in human cancers led us to evaluate the effect of STING-activating nanoparticles (STANs), which are a polymersome-based platform for the delivery of a cyclic dinucleotide STING agonist, on the tumor vasculature and attendant effects on T cell infiltration and antitumor function. In multiple mouse tumor models, intravenous administration of STANs promoted vascular normalization, evidenced by improved vascular integrity, reduced tumor hypoxia, and increased endothelial cell expression of T cell adhesion molecules. STAN-mediated vascular reprogramming enhanced the infiltration, proliferation, and function of antitumor T cells and potentiated the response to immune checkpoint inhibitors and adoptive T cell therapy. We present STANs as a multimodal platform that activates and normalizes the tumor microenvironment to enhance T cell infiltration and function and augments responses to immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Humanos , Imunoterapia , Linfócitos T , Modelos Animais de Doenças , Microambiente Tumoral
2.
Waste Manag ; 165: 27-39, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080015

RESUMO

The release rates of constituents of potential concern from solidified/stabilized cementitious waste forms are potentially impacted by drying, which, however, is not well understood. This study aimed to identify the impacts of drying on subsequent leaching from Cast Stone as an example of a solidified cementitious waste form. The release fluxes of constituents from monoliths after aging under 100, 68, 40, and 15 % relative humidity for 16, 32, and 48 weeks, respectively, were derived from mass transfer tank leaching tests following EPA Method 1315. A monolithic diffusion model was calibrated based on the leaching test results to simulate the leaching of major and redox-sensitive constituents from monoliths after drying. The reduction in physical retention of constituents (tortuosity-factor) in the unsaturated zone was identified as the primary impact from drying on subsequent leaching. Fluxes of both major (i.e., OH-, Na, K, Ca, Si, and Al) and redox-sensitive constituents (i.e., Tc, Cr, Fe, and S) from monoliths during leaching were well described by the model. The drying-induced reduction of tortuosity-factor and concomitant changes in porewater pH and redox conditions can significantly change the subsequent release fluxes of pH- and redox- sensitive constituents.

3.
J Hazard Mater ; 449: 131004, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36821900

RESUMO

Evaluation of the long-term retention mechanisms and potential release rates for the primary constituents of potential concern (COPCs) (i.e., Tc, I, Se, and nitrate) is necessary to determine if Cast Stone, a radioactive waste form, can meet performance objectives under near-surface disposal scenarios. Herein, a mineral and parameter set accounting for the solubility of I and Se in Cast Stone was developed based on pH-dependent and monolithic diffusion leaching test results, to extend a geochemical speciation model previously developed. The impact of oxidation and carbonation as environmental aging processes on the retention properties of Cast Stone for primary COPCs was systematically estimated. Physically, the effective diffusion coefficients of 4 COPCs in Cast Stone were increased after carbonation and/or oxidation, reflecting an increase in permeability to diffusion. Chemically, i) pH & pe conditions in the original Cast Stone were favorable for the stabilization of Tc, but not for I, Se, and N; ii) oxidation (with/without carbonation) of Cast Stone changed the pe & pH conditions to be detrimental for Tc stabilization; and iii) carbonation (with/without oxidation) of Cast Stone modified the pH & pe conditions to be beneficial for the stabilization of I (in system with Ag added) and Se.

4.
Waste Manag ; 144: 431-444, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35461054

RESUMO

Carbonation can be a major aging process during disposal of alkaline cementitious waste forms and can impact constituent leaching by changes in material alkalinity, pore structure, and controlling mineral phases. The effect of carbonation on the leaching of major and trace constituents from Cast Stone, a cementitious waste form developed to treat high salt content low activity waste, was studied through a combination of leaching experiments and reactive transport simulations. Diffusive transport of constituents in the waste form was evaluated using reactive transport modeling of diffusion-controlled leaching test results and a geochemical speciation model derived from pH-dependent leaching. Comparisons between Cast Stone materials aged under nitrogen, air, and 2% carbon dioxide in nitrogen showed that carbonation impacts solubility, physical retention and observed diffusivity of major and trace constituents. Carbonation under 2% CO2 decreased the diffusion-controlled leaching of chromium by two orders of magnitude. Modeling results suggest that carbonation may also decrease solubility of technetium while changes to microstructure by carbonation increases effective diffusivity of constituents in Cast Stone.


Assuntos
Carbonatos , Cromo , Dióxido de Carbono/química , Carbonatos/química , Nitrogênio , Solubilidade
5.
J Hazard Mater ; 428: 128255, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35042166

RESUMO

A closed coal ash impoundment case study characterized the effects of field redox conditions on arsenic and selenium partitioning through monitoring of porewater and subsurface gas in conjunction with geochemical speciation modeling. When disposed coal ash materials and porewater were recovered for testing, oxidation led to lower arsenic and higher selenium concentrations in leaching test extracts compared to porewater measurements. Multiple lines of evidence suggest multiple mechanisms of arsenic retention are plausible and the concurrent presence of several redox processes and conditions (e.g., methanogenesis, sulfate reduction, and Fe(III)-reduction) controlled by spatial gradients and dis-equilibrium. Geochemical speciation modeling indicated that, under reducing field conditions, selenium was immobilized through the formation of insoluble precipitates Se(0) or FeSe while arsenic partitioning was affected by a progression of reactions including changes in arsenic speciation, reduction in adsorption due to dissolution and recrystallization of hydrous ferric oxides, and precipitation of arsenic sulfide minerals.


Assuntos
Arsênio , Selênio , Carvão Mineral/análise , Cinza de Carvão , Compostos Férricos , Oxirredução
6.
Environ Sci Technol ; 55(13): 8642-8653, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34132538

RESUMO

Cast Stone has been developed to immobilize a fraction of radioactive waste at the Hanford Site; however, constituents of potential concern (COPCs) can be released when in contact with water during disposal. Herein, a representative mineral and parameter set for geochemical speciation modeling was developed for Cast Stone aged in inert and oxic environments, to simulate leaching concentrations of major and trace constituents. The geochemical speciation model was verified using a monolithic diffusion model in conjunction with independent monolithic diffusion test results. Eskolaite (Cr2O3) was confirmed as the dominant mineral retaining Cr in Cast Stone doped with 0.1 or 0.2 wt % Cr. The immobilization of Tc as a primary COPC in Cast Stone was evaluated, and the redox states of porewater within monolithic Cast Stone indicated by Cr are insufficient for the reduction of Tc. However, redox states provided by blast furnace slag (BFS) within the interior of Cast Stone are capable of reducing Tc for immobilization, with the immobilization reaction rate postulated to be controlled by the diffusive migration of soluble Tc in porewater to the surface of reducing BFS particles. Aging in oxic conditions increased the flux of Cr and Tc from monolithic Cast Stone.


Assuntos
Resíduos Radioativos , Cromo/análise , Oxirredução , Resíduos Radioativos/análise , Água
8.
ACS Nano ; 14(1): 651-663, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31851488

RESUMO

The overexpression of immunomarker programmed cell death protein 1 (PD-1) and engagement of PD-1 to its ligand, PD-L1, are involved in the functional impairment of cluster of differentiation 8+ (CD8+) T cells, contributing to cancer progression. However, heterogeneities in PD-L1 expression and variabilities in biopsy-based assays render current approaches inaccurate in predicting PD-L1 status. Therefore, PD-L1 screening alone is not predictive of patient response to treatment, which motivates us to simultaneously detect multiple immunomarkers engaged in immune modulation. Here, we have developed multimodal probes, immunoactive gold nanostars (IGNs), that accurately detect PD-L1+ tumor cells and CD8+ T cells simultaneously in vivo, surpassing the limitations of current immunoimaging techniques. IGNs integrate the whole-body imaging of positron emission tomography with high sensitivity and multiplexing of Raman spectroscopy, enabling the dynamic tracking of both immunomarkers. IGNs also monitor response to immunotherapies in mice treated with combinatorial PD-L1 and CD137 agonists and distinguish responders from those nonresponsive to treatment. Our results showed a multifunctional nanoscale probe with capabilities that cannot be achieved with either modality alone, allowing multiplexed immunologic tumor profiling critical for predicting early response to immunotherapies.


Assuntos
Biomarcadores Tumorais/análise , Ouro/química , Imunoterapia , Melanoma/diagnóstico por imagem , Melanoma/terapia , Nanopartículas Metálicas/química , Imagem Óptica , Animais , Antígeno B7-H1/agonistas , Antígeno B7-H1/análise , Antígeno B7-H1/genética , Biomarcadores Tumorais/agonistas , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos , Tamanho da Partícula , Propriedades de Superfície , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/análise , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
9.
Nanoscale ; 10(27): 13092-13105, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29961778

RESUMO

In this work, we demonstrate the targeted diagnosis of immunomarker programmed death ligand 1 (PD-L1) and simultaneous detection of epidermal growth factor receptor (EGFR) in breast cancer tumors in vivo using gold nanostars (AuNS) with multiplexed surface enhanced Raman spectroscopy (SERS). Real-time longitudinal tracking with SERS demonstrated maximum accumulation of AuNS occurred 6 h post intravenous (IV) delivery, enabling detection of both biomarkers simultaneously. Raman signal correlating to both PD-L1 and EGFR decreased by ∼30% in control tumors where receptors were pre-blocked prior to AuNS delivery, indicating both the sensitivity and specificity of SERS in distinguishing tumors with different levels of PD-L1 and EGFR expression. Our in vivo study was combined with the first demonstration of ex vivo SERS spatial maps of whole tumor lesions that provided both a qualitative and quantitative assessment of biomarker status with near cellular-level resolution. High resolution SERS maps also provided an overview of AuNS distribution in tumors which correlated well with the vascular density. Mass spectrometry showed AuNS accumulation in tumor and liver, and clearance via spleen, and electron microscopy revealed AuNS were endocytosed in tumors, Kupffer cells in the liver, and macrophages in the spleen. This study demonstrates that SERS-based diagnosis mediated by AuNS provides an accurate measure of multiple biomarkers both in vivo and ex vivo, which will ultimately enable a clinically-translatable platform for patient-tailored immunotherapies and combination treatments.


Assuntos
Neoplasias da Mama/diagnóstico , Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Antígeno B7-H1/análise , Receptores ErbB/análise , Humanos , Sensibilidade e Especificidade
10.
Chemosphere ; 169: 271-280, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27880926

RESUMO

Leaching assessment procedures have been used to determine the leachability of heavy metals as input for evaluating the risk from sewage sludge compost land application. However, relatively little attention has been paid to understanding leaching from soils with repeated application of sewage sludge compost with elevated levels of heavy metals. In this paper, leaching assessment is extended to evaluate the potential leaching of heavy metals during repetitive application of composted sewage sludge to soils. Four cycling of compost additions and percolation leaching were conducted to investigate how leaching behavior of heavy metals changed with repeated additions of compost. Results showed that repetitive additions of compost to soil significantly increased the content of organic matter, which favored the formation of reducing condition due to improved microbial activities and oxygen consumption. Establishment of reducing conditions can enhance the leaching concentrations of As by approximately 1 order of magnitude, especially for the soil rich in organic matter. For Cd, Cr, Cu, and Pb, repeated additions of compost will cause accumulation in total contents but not enhancement in leaching concentrations. The infiltration following compost additions will leach out the mobile fraction and the residual fraction might not release in the next cycling of compost addition and infiltration. The cumulative release of Cd, Cr, Cu, and Pb accounted for less than 5% of the total contents during four times of compost applications.


Assuntos
Técnicas de Química Analítica/métodos , Metais Pesados/análise , Metais Pesados/química , Esgotos/química , Poluentes do Solo/análise , Solo/química , Agricultura , Monitoramento Ambiental
11.
Chemosphere ; 103: 131-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24359922

RESUMO

Concerns about the environmental safety of coal combustion fly ash use as a supplemental cementitious material have necessitated comprehensive evaluation of the potential for leaching concrete materials containing fly ash used as a cement replacement. Using concrete formulations representative of US residential and commercial applications, test monoliths were made without fly ash replacement (i.e., controls) and with 20% or 45% of the portland cement fraction replaced by fly ash from four coal combustion sources. In addition, microconcrete materials were created with 45% fly ash replacement based on the commercial concrete formulation but with no coarse aggregate and an increased fine aggregate fraction to maintain aggregate-paste interfacial area. All materials were cured for 3 months prior to mass transport-based leach testing of constituents of potential concern (i.e., Sb, As, B, Ba, Cd, Cr, Mo, Pb, Se, Tl and V) according to EPA Method 1315. The cumulative release results were consistent with previously tested samples of concretes and mortars from international sources. Of the 11 constituents tested, only Sb, Ba, B, Cr and V were measured in quantifiable amounts. Microconcretes without coarse aggregate were determined to be conservative surrogates for concrete in leaching assessment since cumulative release from microconcretes were only slightly greater than the associated concrete materials. Relative to control materials without fly ash, concretes and microconcretes with fly ash replacement of cement had increased 28-d and 63-d cumulative release for a limited number 10 comparison cases: 2 cases for Sb, 7 cases for Ba and 1 case for Cr. The overall results suggest minimal leaching impact from fly ash use as a replacement for up to 45% of the cement fraction in typical US concrete formulations; however, scenario-specific assessment based on this leaching evaluation should be used to determine if potential environmental impacts exist.


Assuntos
Cinza de Carvão , Materiais de Construção , Meio Ambiente , Saúde , Humanos , Estados Unidos , United States Environmental Protection Agency
12.
Chemosphere ; 103: 140-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24360846

RESUMO

Current concerns about the environmental safety of coal combustion fly ash have motivated this evaluation of the impact of fly ash use as a cement replacement in concrete materials on the leaching of constituents of potential concern. The chemical effects of fly ash on leaching were determined through characterization of liquid-solid partitioning using EPA Method 1313 for four fly ash materials as well as concrete and microconcrete materials containing 0% (control materials), 25% and 45% replacement of portland cement with the fly ash source. All source materials, concrete formulations and replacement levels are representative of US concrete industry practices. Eluate concentrations as a function of pH were compared to a broader range of available testing results for international concretes and mortars for which the leaching characteristics of the component fly ashes were unknown. The chemistry of the hydrated cement fraction was found to dominate the liquid-solid partitioning resulting in reduced leaching concentrations of most trace metals compared to concentrations from fly ash materials alone. Compared to controls, eluate concentrations of Sb, As, B, Cr, Mo, Se, Tl and V from concrete products containing fly ash were essentially the same as the eluate concentrations from control materials produced without fly ash replacement indicating little to no significant impact on aqueous partitioning.


Assuntos
Cinza de Carvão , Materiais de Construção , Concentração de Íons de Hidrogênio , Estados Unidos , United States Environmental Protection Agency
13.
Health Phys ; 104(3): 264-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23361421

RESUMO

Coal combustion residues from coal-fired power plants can be advantageous for use in building and construction materials. These by-products contain trace quantities of naturally occurring radionuclides from the uranium and thorium series, as well as other naturally occurring radionuclides such as K. Analysis was performed on samples of coal fly ash, flue gas desulfurization, gypsum and scrubber sludges, fixated scrubber sludges, and waste water filter cakes sampled from multiple coal-fired power plants in the United States. The radioactive content of U and Th decay series nuclides was determined using gamma photopeaks from progeny Pb at 352 keV and Tl at 583 keV, respectively; K specific activities were determined using the 1,461 keV photopeak. The samples were hermetically sealed to allow for secular equilibrium between the radium parents and the radon and subsequent progeny. Samples were analyzed in a common geometry using two high purity germanium photon detectors with low energy detection capabilities. The specific activities (Bq kg) were compared to results from literature studies including different building materials and fly ash specific activities. Fly ash from bituminous and subbituminous coals had U specific activities varying from 30-217 Bq kg (mean + 1 s.d. 119 ± 45 Bq kg) and 72-209 Bq kg (115 ± 40 Bq kg), respectively; Th specific activities from 10-120 Bq kg (73 ± 26 Bq kg) and 53-110 Bq kg (81 ± 18 Bq kg), respectively; and K specific activities from 177 to 928 Bq kg (569 ± 184 Bq kg) and 87-303 Bq kg (171 ± 69 Bq kg), respectively. Gypsum samples had U, Th, and K specific activities approximately one order of magnitude less than measured for fly ash samples.


Assuntos
Sulfato de Cálcio/química , Cinza de Carvão/química , Carvão Mineral , Radioisótopos/análise , Esgotos/química
14.
J Environ Qual ; 34(3): 842-53, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15843647

RESUMO

This work focuses on an experimental investigation of the thermodynamic properties of natural organic matter (NOM), and whether fractions of NOM possess the same thermodynamic characteristics as the whole NOM from which they are derived. Advanced thermal characterization techniques were employed to quantify thermal expansion coefficients (alpha), constant-pressure specific heat capacities (C(p)), and thermal transition temperatures (T(t)) of several aquatic- and terrestrial-derived NOM. For the first time, glass transition behavior is reported for a series of NOM fractions derived from the same whole aquatic or terrestrial source, including humic acid-, fulvic acid-, and carbohydrate-based NOM, and a terrestrial humin. Thermal mechanical analysis (TMA), standard differential scanning calorimetry (DSC), and temperature-modulated differential scanning calorimetry (TMDSC) measurements revealed T(t) ranging from -87 degrees C for a terrestrial carbohydrate fraction to 62 degrees C for the humin fraction. The NOM generally followed a trend of increasing T(t) from carbohydrate to fulvic acid to humic acid to humin, and greater T(t) associated with terrestrial fractions relative to aquatic fractions, similar to that expected for macromolecules possessing greater rigidity and larger molecular weight. Many of the NOM samples also possessed evidence of multiple transitions, similar to beta and alpha transitions of synthetic macromolecules. The presence of multiple transitions in fractionated NOM, however, is not necessarily reflected in whole NOM, suggesting other potential influences in the thermal behavior of the whole NOM relative to fractionated NOM. Temperature-scanning X-ray diffraction studies of each NOM fraction confirmed the amorphous character of each sample through T(t).


Assuntos
Poluentes Ambientais , Compostos Orgânicos , Termodinâmica , Difração de Raios X
15.
J Environ Qual ; 33(1): 330-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14964387

RESUMO

Thermal analysis techniques were utilized to investigate the thermal properties of two soils and a lignite coal obtained from the International Humic Substances Society (IHSS), and sediment obtained from The Netherlands. Differential scanning calorimetry (DSC) revealed glass transition behavior of each sample at temperatures ranging from 52 degrees C for Pahokee peat (euic, hyperthermic Lithic Medisaprists), 55 degrees C for a Netherlands (B8) sediment, 64 degrees C for Elliott loam (fine, illitic, mesic Aquic Arguidolls), to 70 degrees C for Gascoyne leonardite. Temperature-modulated differential scanning calorimetry (TMDSC) revealed glass transition behavior at similar temperatures, and quantified constant-pressure specific heat capacity (Cp) at 0 degrees C from 0.6 J g(-1) degrees C(-1) for Elliott loam and 0.8 J g(-1) degrees C(-1) for the leonardite, to 1.0 J g(-1) degrees C(-1) for the peat and the sediment. Glass transition behavior showed no distinct correlation to elemental composition, although Gascoyne Leonardite and Pahokee peat each demonstrated glass transition behavior similar to that reported for humic acids derived from these materials. Thermomechanical analysis (TMA) revealed a large thermal expansion followed by a matrix collapse for each sample between 20 and 30 degrees C, suggesting the occurrence of transition behavior of unknown origin. Thermal transitions occurring at higher temperatures more representative of glass transition behavior were revealed for the sediment and the peat.


Assuntos
Sedimentos Geológicos/química , Solo , Varredura Diferencial de Calorimetria , Óculos , Humanos , Termodinâmica
16.
Chemosphere ; 54(4): 527-39, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14581055

RESUMO

Improved understanding of the structure of soil- and sediment-derived organic matter is critical to elucidating the mechanisms that control the reactivity and transport of contaminants in the environment. This work focuses on an experimental investigation of thermodynamic properties that are a function of the macromolecular structure of natural organic matter (NOM). A suite of thermal analysis instruments were employed to quantify glass transition temperatures (Tg), constant-pressure specific heat capacities (Cp), and thermal expansion coefficients (alpha) of several International Humic Substances Society (IHSS) soil-, sediment-, and aquatic-derived NOMs. Thermal mechanical analysis (TMA) of selected NOMs identified Tgs between 36 and 72 degrees C, and alphas ranging from 11 mum/m degrees C below the Tg to 242 mum/m degrees C above the Tg. Standard differential scanning calorimetry (DSC) and temperature-modulated differential scanning calorimetry (TMDSC) measurements provided additional evidence of glass transition behavior, including identification of multiple transition behavior in two aquatic samples. TMDSC also provided quantitative measures of Cp at 0 and 25 degrees C, ranging from 1.27 to 1.44 J/g degrees C. Results from TMA, DSC, and TMDSC analyses are consistent with glass transition theories for organic macromolecules, and the glass transition behavior of other NOM materials reported in previous studies. Discussion of the importance of quantifying these thermodynamic properties is presented in terms of improved physical and chemical characterization of NOM structures, and in terms of providing constraints to molecular simulation models of NOM structures.


Assuntos
Sedimentos Geológicos/química , Compostos Orgânicos/química , Poluentes do Solo/análise , Análise Diferencial Térmica/métodos , Espectroscopia de Ressonância Magnética/métodos , Compostos Orgânicos/análise , Temperatura , Termodinâmica , Termogravimetria , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...