Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684295

RESUMO

Throughout evolution, plants have developed different strategies of responses and adaptations that allow them to survive in different conditions of abiotic stress. Aloe vera (L.) Burm.f. is a succulent CAM plant that can grow in warm, semi-arid, and arid regions. Here, we tested the effects of preconditioning treatments of water availability (100, 50, and 25% of soil field capacity, FC) on the response of A. vera to prolonged drought growing in the hyper-arid core of the Atacama Desert. We studied leaf biomass, biochemical traits, and photosynthetic traits to assess, at different intervals of time, the effects of the preconditioning treatments on the response of A. vera to seven months of water deprivation. As expected, prolonged drought has deleterious effects on plant growth (a decrease of 55-65% in leaf thickness) and photosynthesis (a decrease of 54-62% in Emax). There were differences in the morphophysiological responses to drought depending on the preconditioning treatment, the 50% FC pretreatment being the threshold to better withstand prolonged drought. A diurnal increase in the concentration of malic acid (20-30 mg mg-1) in the points where the dark respiration increased was observed, from which it can be inferred that A. vera switches its C3-CAM metabolism to a CAM idling mode. Strikingly, all A. vera plants stayed alive after seven months without irrigation. Possible mechanisms under an environmental context are discussed. Overall, because of a combination of morphophysiological traits, A. vera has the remarkable capacity to survive under severe and long-term drought, and further holistic research on this plant may serve to produce biotechnological solutions for crop production under the current scenario of climatic emergency.

2.
Plants (Basel) ; 10(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34834842

RESUMO

Quinoa is a strategic crop due to its high N content and its adaptability to adverse conditions, where most of the soils are deficient of nitrogen (N). The central question in this review was the following: How can quinoa yield low levels of nitrogen in the soils of Altiplano? This question was unraveled based on different factors: (1) fertilization effect on productivity, (2) fertilization limits, (3) uptake and assimilation of nitrogen parameters, (4) monoculture practice effect, and (5) possible sources and strategies. One hundred eleven articles of different scientific platforms were revised and data were collected. Information from articles was used to calculate the partial factor productivity for nitrogen (PFPN), the apparent use efficiency of N (APUEN), available nitrogen (AN), and nitrogen content harvested in grains (HarvN). Quinoa responds positively to fertilization, but differences in yield were found among irrigated and rainfed conditions. Quinoa can produce 1850 kg grains ha-1 with 50 kg N ha-1 under irrigated conditions, and 670 kg grains ha-1 with 15 kg N ha-1 in rainfed conditions. Quinoa increases seed yield and HarvN increases N fertilization, but decreases nitrogen efficiency. In Altiplano, without nitrogen fertilizer, the quinoa yield relies on between 500 and 1000 kg ha-1, which shows that in the soil, there are other nitrogen sources.

3.
Plants (Basel) ; 10(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066627

RESUMO

The broad distribution of quinoa in saline and non-saline environments is reflected in variations in the photosynthesis-associated mechanisms of different ecotypes. The aim of this study was to characterize the photosynthetic response to high salinity (0.4 M NaCl) of two contrasting Chilean genotypes, Amarilla (salt-tolerant, salares ecotype) and Hueque (salt-sensitive, coastal ecotype). Our results show that saline stress induced a significant decrease in the K+/Na+ ratio in roots and an increase in glycine betaine in leaves, particularly in the sensitive genotype (Hueque). Measurement of the photosynthesis-related parameters showed that maximum CO2 assimilation (Amax) in control plants was comparable between genotypes (ca. 9-10 µmol CO2 m-2 s-1). However, salt treatment produced different responses, with Amax values decreasing by 65.1% in the sensitive ecotype and 37.7% in the tolerant one. Although both genotypes maintained mesophyll conductance when stomatal restrictions were removed, the biochemical components of Amarilla were impaired to a lesser extent under salt stress conditions: for example, the maximum rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO; Vcmax) was not as affected in Amarilla, revealing that this enzyme has a higher affinity for its substrate in this genotype and, thus, a better carboxylation efficiency. The present results show that the higher salinity tolerance of Amarilla was also due to its ability to control non-diffusional components, indicating its superior photosynthetic capacity compared to Hueque, particularly under salt stress conditions.

4.
AoB Plants ; 9(5): plx037, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28948009

RESUMO

Initiatives to restore natural ecosystems have had little success in arid and hyperarid ecosystems. In this context, the natural seedling establishment is particularly affected by drought patterns and climatic variability. Likewise, the effect of plant provenance on forest restoration success remains unclear, although previous studies have concluded that some seed locations might be better able to tolerate water stress. In this study, we examined the physiological mechanisms involved in the drought stress resistance of Prosopis tamarugo and Prosopis alba seedlings from different arid and hyperarid locations of the Atacama Desert in northern Chile. We measured the xylem water potential (Ψ), cuticular transpiration (Ec), specific leaf area (SLA) and pressure-volume curves at the intrapopulation and interpopulation levels of seedlings of both species subjected to three drought-induced treatments. In addition, plant characteristics such as seedling height (Sh), stem diameter (Sd), leaf biomass (Lb), root biomass (Rb) and seedling survival (Ss) were measured during the treatments. Seedlings of most hyperarid habitats had the highest values of Ψ and water content relative to the turgor loss point, as well as decreased SLA, especially during the strongest drought treatment. Ψ was strongly correlated with Sh in both species, and soil humidity was correlated with Sd. This study highlights the high variability of physiological responses to water stress in both species at the interpopulation and intrapopulation levels, which provides us with a powerful seed selection tool for future reforestation programmes aimed at the early selection and genetic improvement of species of the Prosopis genus.

5.
J Sci Food Agric ; 96(2): 633-43, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25683633

RESUMO

BACKGROUND: Little is known about varietal differences in the content of bioactive phytoecdysteroids (PE) and flavonoid glycosides (FG) from quinoa (Chenopodium quinoa Willd.). The aim of this study was to determine the variation in PE and FG content among 17 distinct quinoa sources and identify correlations to genotypic (highland vs. lowland) and physico-chemical characteristics (seed color, 100-seed weight, protein content, oil content). RESULTS: PE and FG concentrations exhibited over four-fold differences across quinoa sources, ranging from 138 ± 11 µg g(-1) to 570 ± 124 µg g(-1) total PE content and 192 ± 24 µg g(-1) to 804 ± 91 µg g(-1) total FG content. Mean FG content was significantly higher in highland Chilean varieties (583.6 ± 148.9 µg g(-1)) versus lowland varieties (228.2 ± 63.1 µg g(-1)) grown under the same environmental conditions (P = 0.0046; t-test). Meanwhile, PE content was positively and significantly correlated with oil content across all quinoa sources (r = 0.707, P = 0.002; Pearson correlation). CONCLUSION: FG content may be genotypically regulated in quinoa. PE content may be increased via enhancement of oil content. These findings may open new avenues for the improvement and development of quinoa as a functional food.


Assuntos
Chenopodium quinoa/química , Chenopodium quinoa/genética , Ecdisteroides/análise , Flavonoides/análise , Variação Genética , Glicosídeos/análise , Fenômenos Químicos , Chile , Cromatografia Líquida de Alta Pressão , Ecdisteroides/química , Flavonoides/química , Alimento Funcional/análise , Genótipo , Glicosídeos/química , Espectrometria de Massas , Valor Nutritivo , Sementes/química , Sementes/genética
6.
Compr Rev Food Sci Food Saf ; 14(4): 431-445, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27453695

RESUMO

Quinoa (Chenopodium quinoa Willd., Amaranthaceae) is a grain-like, stress-tolerant food crop that has provided subsistence, nutrition, and medicine for Andean indigenous cultures for thousands of years. Quinoa contains a high content of health-beneficial phytochemicals, including amino acids, fiber, polyunsaturated fatty acids, vitamins, minerals, saponins, phytosterols, phytoecdysteroids, phenolics, betalains, and glycine betaine. Over the past 2 decades, numerous food and nutraceutical products and processes have been developed from quinoa. Furthermore, 4 clinical studies have demonstrated that quinoa supplementation exerts significant, positive effects on metabolic, cardiovascular, and gastrointestinal health in humans. However, vast challenges and opportunities remain within the scientific, agricultural, and development sectors to optimize quinoa's role in the promotion of global human health and nutrition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...