Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(37): 15042-7, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22908303

RESUMO

A component in seminal fluid elicits an ovulatory response and has been discovered in every species examined thus far. The existence of an ovulation-inducing factor (OIF) in seminal plasma has broad implications and evokes questions about identity, tissue sources, mechanism of action, role among species, and clinical relevance in infertility. Most of these questions remain unanswered. The goal of this study was to determine the identity of OIF in support of the hypothesis that it is a single distinct and widely conserved entity. Seminal plasma from llamas and bulls was used as representative of induced and spontaneous ovulators, respectively. A fraction isolated from llama seminal plasma by column chromatography was identified as OIF by eliciting luteinizing hormone (LH) release and ovulation in llamas. MALDI-TOF revealed a molecular mass of 13,221 Da, and 12-23 aa sequences of OIF had homology with human, porcine, bovine, and murine sequences of ß nerve growth factor (ß-NGF). X-ray diffraction data were used to solve the full sequence and structure of OIF as ß-NGF. Neurite development and up-regulation of trkA in phaeochromocytoma (PC(12)) cells in vitro confirmed NGF-like properties of OIF. Western blot analysis of llama and bull seminal plasma confirmed immunorecognition of OIF using polyclonal mouse anti-NGF, and administration of ß-NGF from mouse submandibular glands induced ovulation in llamas. We conclude that OIF in seminal plasma is ß-NGF and that it is highly conserved. An endocrine route of action of NGF elucidates a previously unknown pathway for the direct influence of the male on the hypothalamo-pituitary-gonadal axis of the inseminated female.


Assuntos
Camelídeos Americanos/metabolismo , Bovinos/metabolismo , Fator de Crescimento Neural/metabolismo , Ovulação/metabolismo , Sêmen/química , Animais , Western Blotting , Cromatografia Líquida , Biologia Computacional , Feminino , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Fator de Crescimento Neural/análise , Fator de Crescimento Neural/genética , Homologia de Sequência , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Difração de Raios X
2.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 10): 856-69, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21931217

RESUMO

Isocitrate dehydrogenase catalyzes the first oxidative and decarboxylation steps in the citric acid cycle. It also lies at a crucial bifurcation point between CO2-generating steps in the cycle and carbon-conserving steps in the glyoxylate bypass. Hence, the enzyme is a focus of regulation. The bacterial enzyme is typically dependent on the coenzyme nicotinamide adenine dinucleotide phosphate. The monomeric enzyme from Corynebacterium glutamicum is highly specific towards this coenzyme and the substrate isocitrate while retaining a high overall efficiency. Here, a 1.9 Šresolution crystal structure of the enzyme in complex with its coenzyme and the cofactor Mg2+ is reported. Coenzyme specificity is mediated by interactions with the negatively charged 2'-phosphate group, which is surrounded by the side chains of two arginines, one histidine and, via a water, one lysine residue, forming ion pairs and hydrogen bonds. Comparison with a previous apoenzyme structure indicates that the binding site is essentially preconfigured for coenzyme binding. In a second enzyme molecule in the asymmetric unit negatively charged aspartate and glutamate residues from a symmetry-related enzyme molecule interact with the positively charged arginines, abolishing coenzyme binding. The holoenzyme from C. glutamicum displays a 36° interdomain hinge-opening movement relative to the only previous holoenzyme structure of the monomeric enzyme: that from Azotobacter vinelandii. As a result, the active site is not blocked by the bound coenzyme as in the closed conformation of the latter, but is accessible to the substrate isocitrate. However, the substrate-binding site is disrupted in the open conformation. Hinge points could be pinpointed for the two molecules in the same crystal, which show a 13° hinge-bending movement relative to each other. One of the two pairs of hinge residues is intimately flanked on both sides by the isocitrate-binding site. This suggests that binding of a relatively small substrate (or its competitive inhibitors) in tight proximity to a hinge point could lead to large conformational changes leading to a closed, presumably catalytically active (or inactive), conformation. It is possible that the small-molecule concerted inhibitors glyoxylate and oxaloacetate similarly bind close to the hinge, leading to an inactive conformation of the enzyme.


Assuntos
Corynebacterium glutamicum/enzimologia , Isocitrato Desidrogenase/química , Domínio Catalítico , Cristalografia por Raios X , Holoenzimas/química , Ligação de Hidrogênio , Isocitrato Desidrogenase/metabolismo , Magnésio/metabolismo , Modelos Moleculares , NADP/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína
3.
Reprod Biol Endocrinol ; 9: 24, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21310078

RESUMO

BACKGROUND: The objective of the present study was to isolate and purify the protein fraction(s) of llama seminal plasma responsible for the ovulation-inducing effect of the ejaculate. METHODS: Semen collected from male llamas by artificial vagina was centrifuged and the seminal plasma was harvested and stored frozen. Seminal plasma was thawed and loaded onto a Type 1 macro-prep ceramic hydroxylapatite column and elution was carried out using a lineal gradient with 350 mM sodium phosphate. Three protein fractions were identified clearly (Fractions A, B, and C), where a prominent protein band with a mass of 14 kDa was identified in Fraction C. Fraction C was loaded into a sephacryl gel filtration column for further purification using fast protein liquid chromatography (FPLC). Isocratic elution resulted in 2 distinct protein fractions (Fractions C1 and C2). An in vivo bioassay (n=10 to 11 llamas per group) was used to determine the ovarian effect of each fraction involving treatment with saline (negative control), whole seminal plasma (positive control), or seminal plasma Fractions A, B or C2. Ultrasonography was done to detect ovulation and CL formation, and blood samples were taken to measure plasma progesterone and LH concentrations. RESULTS: Ovulation and CL formation was detected in 0/10, 10/11, 0/10, 2/11, and 10/11 llamas treated with saline, whole seminal plasma, Fractions A, B and C2 respectively (P<0.001). A surge in circulating concentrations of LH was detected within 2 hours only in llamas treated with either whole seminal plasma or Fraction C2. Plasma progesterone concentration and CL diameter profiles were greatest (P<0.05) in llamas treated with Fraction C2. CONCLUSION: Ovulation-inducing factor was isolated from llama seminal plasma as a 14 kDa protein molecule that elicits a preovulatory LH surge followed by ovulation and CL formation in llamas, suggesting an endocrine effect at the level of the hypothalamus (release of GnRH) or the pituitary (gonadotrophs).


Assuntos
Camelídeos Americanos , Indução da Ovulação/veterinária , Ovulação/efeitos dos fármacos , Sêmen/química , Animais , Bioensaio , Cromatografia Líquida , Corpo Lúteo/efeitos dos fármacos , Feminino , Hormônio Luteinizante/metabolismo , Masculino , Indução da Ovulação/métodos , Progesterona/sangue
4.
Artigo em Inglês | MEDLINE | ID: mdl-20606285

RESUMO

The Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase I86A mutant is stereospecific for (R)-alcohols instead of (S)-alcohols. Pyramidal crystals grown in the presence of (R)-phenylethanol via the hanging-drop vapour-diffusion method diffracted to 3.2 A resolution at the Canadian Light Source. The crystal belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 80.23, b = 124.90, c = 164.80 A. The structure was solved by molecular replacement using the structure of T. brockii SADH (PDB entry 1ykf).


Assuntos
Oxirredutases do Álcool/química , Mutação , Thermoanaerobacter/enzimologia , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/isolamento & purificação , Cristalização , Cristalografia por Raios X , Isoleucina/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-19478447

RESUMO

Wilson disease associated protein (ATP7B) is essential for copper transport in human cells. Mutations that affect ATP7B function result in Wilson's disease, a chronic copper toxicosis. Disease-causing mutations within the N-domain of ATP7B (WND) are known to disrupt ATP binding, but a high-resolution X-ray structure of the ATP-binding site has not been reported. The N-domain was modified to delete the disordered loop comprising residues His1115-Asp1138 (WNDDelta(1115-1138)). Unlike the wild-type N-domain, WNDDelta(1115-1138) formed good-quality crystals. Synchrotron diffraction data have been collected from WNDDelta(1115-1138) at the Canadian Light Source. A native WNDDelta(1115-1138) crystal diffracted to 1.7 A resolution and belonged to space group P4(2)2(1)2, with unit-cell parameters a = 39.2, b = 39.2, c = 168.9 A. MAD data were collected to 2.7 A resolution from a SeMet-derivative crystal with unit-cell parameters a = 38.4, b = 38.4, c = 166.7 A. The WNDDelta(1115-1138) structure is likely to be solved by phasing from multiwavelength anomalous diffraction (MAD) experiments.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Transporte de Cátions/química , Cobre/química , Cristalografia por Raios X , Difração de Raios X , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/isolamento & purificação , Proteínas de Transporte de Cátions/metabolismo , Sequência Conservada , Cobre/metabolismo , ATPases Transportadoras de Cobre , Cristalização , Coleta de Dados , Escherichia coli/genética , Degeneração Hepatolenticular/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Estatística como Assunto , Síncrotrons , Transformação Bacteriana
6.
Biochemistry ; 47(36): 9486-96, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18702519

RESUMO

Aspartates and asparagines can spontaneously cyclize with neighboring main-chain amides to form succinimides. These succinimides hydrolyze to a mixture of isoaspartate and aspartate products. Phosphorylation of aspartates is a common mechanism of protein regulation and increases the propensity for succinimide formation. Although typically regarded as a form of protein damage, we hypothesize succinimides could represent an effective mechanism of phosphoaspartate autophosphatase activity, provided hydrolysis is limited to aspartate products. We previously reported the serendipitous creation of a protein, His15Asp histidine-containing protein (HPr), which undergoes phosphorylation-catalyzed formation of a succinimide whose hydrolysis is seemingly exclusive for aspartate formation. Here, through the high-resolution structure of postsuccinimide His15Asp HPr, we confirm the absence of isoaspartate residues and propose mechanisms for phosphorylation-catalyzed succinimide formation and its directed hydrolysis to aspartate. His15Asp HPr represents the first characterized protein example of an isoaspartate-free succinimide and lends credence to the hypothesis that intramolecular cyclization could represent a physiological mechanism of autophosphatase activity. Furthermore, this indicates that current strategies for succinimide evaluation, based on isoaspartate detection, underestimate the frequencies of these reactions. This is considerably significant for evaluation of protein stability and integrity.


Assuntos
Ácido Aspártico/química , Proteínas de Bactérias/química , Escherichia coli/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Succinimidas/química , Catálise , Cristalografia por Raios X , Hidrólise , Fosforilação , Estrutura Terciária de Proteína/fisiologia
7.
Appl Microbiol Biotechnol ; 81(3): 485-95, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18719905

RESUMO

Thermotoga maritima TM0298 is annotated as an alcohol dehydrogenase, yet it shows high identity and similarity to mesophilic mannitol dehydrogenases. To investigate this enzyme further, its gene was cloned and expressed in Escherichia coli. The purified recombinant enzyme was most active on fructose and mannitol, making it the first known hyperthermophilic mannitol dehydrogenase. T. maritima mannitol dehydrogenase (TmMtDH) is optimally active between 90 and 100 degrees C and retains 63% of its activity at 120 degrees C but shows no detectable activity at room temperature. Its kinetic inactivation follows a first-order mechanism, with half-lives of 57 min at 80 degrees C and 6 min at 95 degrees C. Although TmMtDH has a higher V (max) with NADPH than with NADH, its catalytic efficiency is 2.2 times higher with NADH than with NADPH and 33 times higher with NAD(+) than with NADP(+). This cofactor specificity can be explained by the high density of negatively charged residues (Glu193, Asp195, and Glu196) downstream of the NAD(P) interaction site, the glycine motif. We demonstrate that TmMtDH contains a single catalytic zinc per subunit. Finally, we provide the first proof of concept that mannitol can be produced directly from glucose in a two-step enzymatic process, using a Thermotoga neapolitana xylose isomerase mutant and TmMtDH at 60 degrees C.


Assuntos
Proteínas de Bactérias/química , Manitol Desidrogenases/química , Thermotoga maritima/química , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glucose/metabolismo , Temperatura Alta , Cinética , Manitol/metabolismo , Manitol Desidrogenases/genética , Manitol Desidrogenases/isolamento & purificação , Manitol Desidrogenases/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
8.
Chembiochem ; 9(10): 1591-602, 2008 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-18536061

RESUMO

MosA is an enzyme from Sinorhizobium meliloti L5-30, a beneficial soil bacterium that forms a symbiotic relationship with leguminous plants. MosA was proposed to catalyze the conversion of scyllo-inosamine to 3-O-methyl-scyllo-inosamine (compounds known as rhizopines), despite the MosA sequence showing a strong resemblance to dihydrodipicolinate synthase (DHDPS) sequences rather than to methyltransferases. Our laboratory has already shown that MosA is an efficient catalyst of the DHDPS reaction. Here we report the structure of MosA, solved to 1.95 A resolution, which resembles previously reported DHDPS structures. In this structure Lys161 forms a Schiff base adduct with pyruvate, consistent with the DHDPS mechanism. We have synthesized both known rhizopines and investigated their ability to interact with MosA in the presence and absence of methyl donors. No MosA-catalyzed methyltransferase activity is observed in the presence of scyllo-inosamine and S-adenosylmethionine (SAM). 2-Oxobutyrate can form a Schiff base with MosA, acting as a competitive inhibitor of MosA-catalyzed dihydrodipicolinate synthesis. It can be trapped on the enzyme by reaction with sodium borohydride, but does not act as a methyl donor. The presence of rhizopines does not affect the kinetics of dihydrodipicolinate synthesis. Isothermal titration calorimetry (ITC) shows no apparent interaction of MosA with rhizopines and SAM. Similar experiments with pyruvate as titrant demonstrate that the reversible Schiff base formation is largely entropically driven. This is the first use of ITC to study Schiff base formation between an enzyme and its substrate.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/metabolismo , Sinorhizobium meliloti/enzimologia , Proteínas de Bactérias/química , Calorimetria , Carbono-Carbono Liases/química , Cristalografia , Inositol/análogos & derivados , Inositol/biossíntese , Inositol/química , Cinética , Substâncias Macromoleculares/química , Modelos Moleculares , S-Adenosilmetionina/metabolismo , Microbiologia do Solo , Especificidade por Substrato
9.
Int J Biochem Cell Biol ; 40(8): 1597-603, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18234538

RESUMO

GTP-dependent phosphoenolpyruvate carboxykinase (PCK) is the key enzyme that controls the blood glucose level during fasting in higher animals. Here we report the first substrate-free structure of a GTP-dependent phosphoenolpyruvate (PEP) carboxykinase from a bacterium, Corynebacterium glutamicum (CgPCK). The protein crystallizes in space group P2(1) with four molecules per asymmetric unit. The 2.3A resolution structure was solved by molecular replacement using the human cytosolic PCK (hcPCK) structure (PDB ID: 1KHF) as the starting model. The four molecules in the asymmetric unit pack as two dimers, and is an artifact of crystal packing. However, the P-loop and the guanine binding loop of the substrate-free CgPCK structure have different conformations from the other published GTP-specific PCK structures, which all have bound substrates and/or metal ions. It appears that a change in the P-loop and guanine binding loop conformation is necessary for substrate binding in GTP-specific PCKs, as opposed to overall domain movement in ATP-specific PCKs.


Assuntos
Corynebacterium glutamicum/enzimologia , Fosfoenolpiruvato Carboxiquinase (GTP)/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Estrutura Quaternária de Proteína , Espectrometria de Fluorescência
10.
Biochim Biophys Acta ; 1784(1): 100-5, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17728195

RESUMO

Histidine phosphorylation is important in prokaryotes and occurs to the extent of 6% of total phosphorylation in eukaryotes. Nevertheless phosphohistidine residues are not normally observed in proteins due to rapid hydrolysis of the phosphoryl group under acidic conditions. Many rapid processes employ phosphohistidines, including the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS), the bacterial two-component systems and reactions catalyzed by enzymes such as nucleoside diphosphate kinase and succinyl-CoA synthetase. In the PTS, the NMR structure of the phosphohistidine moiety of the phosphohistidine-containing protein was determined but no X-ray structures of phosphohistidine forms of PTS proteins have been elucidated. There have been crystal structures of a few phosphohistidine-containing proteins determined: nucleoside diphosphate kinase, succinyl-CoA synthetase, a cofactor-dependent phosphoglycerate mutase and the protein PAE2307 from the hyperthermophilic archaeon Pyrobaculum aerophilum. A common theme for these stable phosphohistidines is the occurrence of ion-pair hydrogen bonds (salt bridges) involving the non-phosphorylated nitrogen atom of the histidine imidazole ring with an acidic amino acid side chain.


Assuntos
Histidina/análogos & derivados , Histidina/metabolismo , Cristalografia por Raios X , Histidina/química , Ligação de Hidrogênio , Núcleosídeo-Difosfato Quinase/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfoglicerato Mutase/química , Fosforilação , Succinato-CoA Ligases/química , Succinato-CoA Ligases/metabolismo
11.
Int J Biochem Cell Biol ; 39(6): 1204-10, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17475535

RESUMO

Phosphoenolpyruvate carboxykinase (PCK) reversibly catalyzes the carboxylation of phosphoenolpyruvate to oxaloacetate. Carbon dioxide, and not bicarbonate ion, is the substrate utilized. Assays of the carboxylation reaction show that initial velocities are 7.6-fold higher when CO(2) is used instead of HCO(3)(-). Two Escherichia coli PCK-CO(2) crystal structures are presented here. The location of CO(2) is the same for both structures; however the orientation of CO(2) is significantly different, likely from the presence of a manganese ion in one of the structures. PCK and the other three known protein-CO(2) crystal structure complexes have been compared; all have CO(2) hydrogen bonding with a basic amino acid side chain (Arg65 or Lys213 in PCK), likely to polarize CO(2) to make the central carbon atom more electrophilic and thus more reactive. Kinetic studies found that the PCK mutant Arg65Gln increased the K(M) for substrates PEP and oxaloacetate but not for CO(2). The unchanged K(M) for CO(2) can be explained since the Arg65Gln mutant likely maintains a hydrogen bond to one of the oxygen atoms of carbon dioxide.


Assuntos
Dióxido de Carbono/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Sítios de Ligação , Dióxido de Carbono/química , Catálise , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxaloacetatos/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/química , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Ligação Proteica , Relação Estrutura-Atividade , Difração de Raios X
12.
Artigo em Inglês | MEDLINE | ID: mdl-17401214

RESUMO

Diffraction data have been collected from a crystal of Thermotoga maritima mannitol dehydrogenase at the Canadian Light Source. The crystal diffracted to 3.3 A resolution and belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 83.43, b = 120.61, c = 145.76 A. The structure is likely to be solved by molecular replacement.


Assuntos
Manitol Desidrogenases/química , Thermotoga maritima/enzimologia , Cristalização , Cristalografia por Raios X , Conformação Proteica
13.
Evol Bioinform Online ; 3: 333-40, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19461981

RESUMO

Phosphoenolpyruvate carboxykinase (PCK) is the key enzyme to initiate the gluconeogenic pathway in vertebrates, yeast, plants and most bacteria. Nucleotide specificity divided all PCKs into two groups. All the eukaryotic mammalian and most archaeal PCKs are GTP-specific. Bacterial and fungal PCKs can be ATP-or GTP-specific but all plant PCKs are ATP-specific. Amino acid sequence alignment of PCK enzymes shows that the nucleotide binding sites are somewhat conserved within each class with few exceptions that do not have any clear ATP- or GTP-specific binding motif. Although the active site residues are mostly conserved in all PCKs, not much significant sequence homology persists between ATP- and GTP-dependent PCK enzymes. There is only one planctomycetes PCK enzyme (from Cadidatus Kuenenia stuttgartiensis) that shows sequence homology with both ATP-and GTP-dependent PCKs. Phylogenetic studies have been performed to understand the evolutionary relationship of various PCKs from different sources. Based on this study a flowchart of the evolution of PCK has been proposed.

14.
J Biol Chem ; 281(31): 22131-22141, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16737961

RESUMO

Phosphorylation of both small molecules and proteins plays a central role in many biological processes. In proteins, phosphorylation most commonly targets the oxygen atoms of Ser, Thr, and Tyr. In contrast, stably phosphorylated His residues are rarely found, due to the lability of the N-P bond, and histidine phosphorylation features most often in transient processes. Here we present the crystal structure of a protein of previously unknown function, which proves to contain a stably phosphorylated histidine residue. The protein is the product of open reading frame PAE2307, from the hyperthermophilic archaeon Pyrobaculum aerophilum, and is representative of a highly conserved protein family found in archaea and bacteria. The crystal structure of PAE2307, solved at 1.45-A resolution (R = 0.208, R(free) = 0.227), forms a remarkably tightly associated hexamer. The phosphorylated histidine at the proposed active site, pHis85, occupies a cavity that is at the interface between two subunits and contains a number of fully conserved residues. Stable phosphorylation is attributed to favorable hydrogen bonding of the phosphoryl group and a salt bridge with pHis85 that provides electronic stabilization. In silico modeling suggested that the protein may function as an adenosine kinase, a conclusion that is supported by in vitro assays of adenosine binding, using fluorescence spectroscopy, and crystallographic visualization of an adenosine complex of PAE2307 at 2.25-A resolution.


Assuntos
Adenosina Quinase/química , Proteínas Arqueais/química , Sequência Conservada , Histidina/metabolismo , Fosforilação , Adenosina/química , Adenosina/metabolismo , Adenosina Quinase/genética , Adenosina Quinase/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Família Multigênica , Pyrobaculum/enzimologia , Eletricidade Estática
15.
Artigo em Inglês | MEDLINE | ID: mdl-16511261

RESUMO

The structure of MosA, a dihydrodipicolinate synthase and reported methyltransferase from Sinorhizobium meliloti, has been solved using molecular replacement with Escherichia coli dihydrodipicolinate synthase as the model. A crystal grown in the presence of pyruvate diffracted X-rays to 2.3 A resolution using synchrotron radiation and belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 69.14, b = 138.87, c = 124.13 A.


Assuntos
Proteínas de Bactérias/química , Hidroliases/química , Sinorhizobium meliloti/enzimologia , Cristalização , Cristalografia por Raios X , Luz , Proteínas Recombinantes/química , Espalhamento de Radiação , Soluções
16.
Proteins ; 63(1): 100-12, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16416443

RESUMO

Both monomeric and dimeric NADP+-dependent isocitrate dehydrogenase (IDH) belong to the metal-dependent beta-decarboxylating dehydrogenase family and catalyze the oxidative decarboxylation from 2R,3S-isocitrate to yield 2-oxoglutarate, CO2, and NADPH. It is important to solve the structures of IDHs from various species to correlate with its function and evolutionary significance. So far, only two crystal structures of substrate/cofactor-bound (isocitrate/NADP) NADP+-dependent monomeric IDH from Azotobacter vinelandii (AvIDH) have been solved. Herein, we report for the first time the substrate/cofactor-free structure of a monomeric NADP+-dependent IDH from Corynebacterium glutamicum (CgIDH) in the presence of Mg2+. The 1.75 A structure of CgIDH-Mg2+ showed a distinct open conformation in contrast to the closed conformation of AvIDH-isocitrate/NADP+ complexes. Fluorescence studies on CgIDH in the presence of isocitrate/or NADP+ suggest the presence of low energy barrier conformers. In CgIDH, the amino acid residues corresponding to the Escherichia coli IDH phosphorylation-loop are alpha-helical compared with the more flexible random-coil region in the E. coli protein where IDH activation is controlled by phosphorylation. This more structured region supports the idea that activation of CgIDH is not controlled by phosphorylation. Monomeric NADP+-specific IDHs have been identified from about 50 different bacterial species, such as proteobacteria, actinobacteria, and planctomycetes, whereas, dimeric NADP+-dependent IDHs are diversified in both prokaryotes and eukaryotes. We have constructed a phylogenetic tree based on amino acid sequences of all bacterial monomeric NADP+-dependent IDHs and also another one with specifically chosen species which either contains both monomeric and dimeric NADP+-dependent IDHs or have monomeric NADP+-dependent, as well as NAD+-dependent IDHs. This is done to examine evolutionary relationships.


Assuntos
Isocitrato Desidrogenase/química , NADP/química , Proteínas de Bactérias/química , Corynebacterium/metabolismo , Cristalografia por Raios X , Dimerização , Evolução Molecular , Magnésio/química , Manganês/química , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Fosforilação , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Especificidade por Substrato
17.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 7): 903-12, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15983413

RESUMO

Actinobacillus succinogenes can produce, via fermentation, high concentrations of succinate, an important industrial commodity. A key enzyme in this pathway is phosphoenolpyruvate carboxykinase (PCK), which catalyzes the production of oxaloacetate from phosphoenolpyruvate and carbon dioxide, with the concomitant conversion of adenosine 5'-diphosphate to adenosine 5'-triphosphate. 1.85 and 1.70 A resolution structures of the native and a pyruvate/Mn(2+)/phosphate complex have been solved, respectively. The structure of the complex contains sulfhydryl reducing agents covalently bound to three cysteine residues via disulfide bonds. One of these cysteine residues (Cys285) is located in the active-site cleft and may be analogous to the putative reactive cysteine of PCK from Trypanosoma cruzi. Cys285 is also part of a previously unreported conserved motif comprising residues 280-287 and containing the pattern NXEXGXY(/F)A(/G); this new motif appears to have a structural role in stabilizing and positioning side chains that bind substrates and metal ions. The first few residues of this motif connect the two domains of the enzyme and a fulcrum point appears to be located near Asn280. In addition, an active-site Asp residue forms two coordinate bonds with the Mn(2+) ion present in the structure of the complex in a symmetrical bidentate manner, unlike in other PCK structures that contain a manganese ion.


Assuntos
Actinobacillus/enzimologia , Fosfoenolpiruvato Carboxiquinase (ATP)/química , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Cisteína/química , Ligantes , Manganês/química , Estrutura Terciária de Proteína , Alinhamento de Sequência , Succinatos/metabolismo
18.
Int J Biochem Cell Biol ; 37(9): 1829-37, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15890557

RESUMO

The 2.2 Angstroms resolution crystal structure of the enzyme phosphoenolpyruvate carboxykinase (PCK) from the bacterium Anaerobiospirillum succiniciproducens complexed with ATP, Mg(2+), Mn(2+) and the transition state analogue oxalate has been solved. The 2.4 Angstroms resolution native structure of A. succiniciproducens PCK has also been determined. It has been found that upon binding of substrate, PCK undergoes a conformational change. Two domains of the molecule fold towards each other, with the substrates and metal ions held in a cleft formed between the two domains. This domain movement is believed to accelerate the reaction PCK catalyzes by forcing bulk solvent molecules out of the active site. Although the crystal structure of A. succiniciproducens PCK with bound substrate and metal ions is related to the structures of PCK from Escherichia coli and Trypanosoma cruzi, it is the first crystal structure from this class of enzymes that clearly shows an important surface loop (residues 383-397) from the C-terminal domain, hydrogen bonding with the peptide backbone of the active site residue Arg60. The interaction between the surface loop and the active site backbone, which is a parallel beta-sheet, seems to be a feature unique of A. succiniciproducens PCK. The association between the loop and the active site is the third type of interaction found in PCK that is thought to play a part in the domain closure. This loop also appears to help accelerate catalysis by functioning as a 'lid' that shields water molecules from the active site.


Assuntos
Anaerobiospirillum/enzimologia , Fosfoenolpiruvato Carboxiquinase (ATP)/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Magnésio/metabolismo , Manganês/metabolismo , Modelos Moleculares , Estrutura Molecular , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Estrutura Secundária de Proteína
19.
Biochim Biophys Acta ; 1697(1-2): 271-8, 2004 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15023367

RESUMO

Phosphoenolpyruvate carboxykinase (PCK) catalyzes the conversion of oxaloacetate (OAA) to PEP and carbon dioxide with the subsequent conversion of nucleoside triphosphate to nucleoside diphosphate (NDP). The 1.9 A resolution structure of Escherichia coli PCK consisted of a 275-residue N-terminal domain and a 265-residue C-terminal domain with the active site located in a cleft between these domains. Each domain has an alpha/beta topology and the overall structure represents a new protein fold. Furthermore, PCK has a unique mononucleotide-binding fold. The 1.8 A resolution structure of the complex of ATP/Mg(2+)/oxalate with PCK revealed a 20 degrees hinge-like rotation of the N- and C-terminal domains, which closed the active site cleft. The ATP was found in the unusual syn conformation as a result of binding to the enzyme. Along with the side chain of Lys254, Mg(2+) neutralizes charges on the P beta and P gamma oxygen atoms of ATP and stabilizes an extended, eclipsed conformation of the P beta and P gamma phosphoryl groups. The sterically strained high-energy conformation likely lowers the free energy of activation for phosphoryl transfer. Additionally, the gamma-phosphoryl group becomes oriented in-line with the appropriate enolate oxygen atom, which strongly supports a direct S(N)2-type displacement of this gamma-phosphoryl group by the enolate anion. In the 2.0 A resolution structure of the complex of PCK/ADP/Mg(2+)/AlF(3), the AlF(3) moiety represents the phosphoryl group being transferred during catalysis. There are three positively charged groups that interact with the fluorine atoms, which are complementary to the three negative charges that would occur for an associative transition state.


Assuntos
Organofosfatos/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/química , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/química , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Catálise , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
20.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 2): 256-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14747701

RESUMO

V8 protease, an extracellular protease of Staphylococcus aureus, is related to the pancreatic serine proteases. The enzyme cleaves peptide bonds exclusively on the carbonyl side of aspartate and glutamate residues. Unlike the pancreatic serine proteases, V8 protease possesses no disulfide bridges. This is a major evolutionary difference, as all pancreatic proteases have at least two disulfide bridges. The structure of V8 protease shows structural similarity with several other serine proteases, specifically the epidermolytic toxins A and B from S. aureus and trypsin, in which the conformation of the active site is almost identical. V8 protease is also unique in that the positively charged N-terminus is involved in determining the substrate-specificity of the enzyme.


Assuntos
Serina Endopeptidases/química , Staphylococcus aureus/enzimologia , Ácido Aspártico/química , Sítios de Ligação , Catálise , Cristalografia por Raios X , Dissulfetos , Ácido Glutâmico/química , Modelos Moleculares , Peptídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Serina/química , Tripsina/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...