Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7186, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531913

RESUMO

Tinnitus is a conscious attended awareness perception of sourceless sound. Widespread theoretical and evidence-based neurofunctional and psychological models have tried to explain tinnitus-related distress considering the influence of psychological and cognitive factors. However, tinnitus models seem to be less focused on causality, thereby easily misleading interpretations. Also, they may be incapable of individualization. This study proposes a Conceptual Cognitive Framework (CCF) providing insight into cognitive mechanisms involved in the predisposition, precipitation, and perpetuation of tinnitus and consequent cognitive-emotional disturbances. The current CCF for tinnitus relies on evaluative conditional learning and appraisal, generating negative valence (emotional value) and arousal (cognitive value) to annoyance, distress, and distorted perception. The suggested methodology is well-defined, reproducible, and accessible, which can help foster future high-quality clinical databases. Perceived tinnitus through the perpetual-learning process can always lead to annoyance, but only in the clinical stage directly cause annoyance. In the clinical stage, tinnitus perception can lead indirectly to distress only with experiencing annoyance either with (" I n d - 1 C " = 1.87; 95% CI 1.18-2.72)["1st indirect path in the Clinical stage model": Tinnitus Loudness → Attention Bias → Cognitive-Emotional Value → Annoyance → Clinical Distress]or without (" I n d - 2 C "= 2.03; 95% CI 1.02-3.32)[ "2nd indirect path in the Clinical stage model": Tinnitus Loudness → Annoyance → Clinical Distress] the perpetual-learning process. Further real-life testing of the CCF is expected to express a meticulous, decision-supporting platform for cognitive rehabilitation and clinical interventions. Furthermore, the suggested methodology offers a reliable platform for CCF development in other cognitive impairments and supports the causal clinical data models. It may also enhance our knowledge of psychological disorders and complicated comorbidities by supporting the design of different rehabilitation interventions and comprehensive frameworks in line with the "preventive medicine" policy.


Assuntos
Zumbido , Humanos , Emoções , Cognição , Sintomas Afetivos , Nível de Alerta
2.
Brain Sci ; 13(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37239298

RESUMO

Around 30% of the general population experience subjective tinnitus, characterized by conscious attended awareness perception of sound without an external source. Clinical distress tinnitus is more than just experiencing a phantom sound, as it can be highly disruptive and debilitating, leading those affected to seek clinical help. Effective tinnitus treatments are crucial for psychological well-being, but our limited understanding of the underlying neural mechanisms and a lack of a universal cure necessitate further treatment development. In light of the neurofunctional tinnitus model predictions and transcranial electrical stimulation, we conducted an open-label, single-arm, pilot study that utilized high-definition transcranial direct current stimulation (HD-tDCS) concurrent with positive emotion induction (PEI) techniques for ten consecutive sessions to down-regulate tinnitus negative valence in patients with clinical distress tinnitus. We acquired resting-state functional magnetic resonance imaging scans of 12 tinnitus patients (7 females, mean age = 51.25 ± 12.90 years) before and after the intervention to examine resting-state functional connectivity (rsFC) alterations in specific seed regions. The results showed reduced rsFC at post-intervention between the attention and emotion processing regions as follows: (1) bilateral amygdala and left superior parietal lobule (SPL), (2) left amygdala and right SPL, (3) bilateral dorsolateral prefrontal cortex (dlPFC) and bilateral pregenual anterior cingulate cortex (pgACC), and (4) left dlPFC and bilateral pgACC (FWE corrected p < 0.05). Furthermore, the post-intervention tinnitus handicap inventory scores were significantly lower than the pre-intervention scores (p < 0.05). We concluded that concurrent HD-tDCS and PEI might be effective in reducing tinnitus negative valence, thus alleviating tinnitus distress.

3.
Polymers (Basel) ; 15(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37177358

RESUMO

Polymer single-screw extrusion is a major industrial processing technique used to obtain plastic products. To assure high outputs, tight dimensional tolerances, and excellent product performance, extruder screws may show different design characteristics. Barrier screws, which contain a second flight in the compression zone, have become quite popular as they promote and stabilize polymer melting. Therefore, it is important to design efficient extruder screws and decide whether a conventional screw will perform the job efficiently, or a barrier screw should be considered instead. This work uses multi-objective evolutionary algorithms to design conventional and barrier screws (Maillefer screws will be studied) with optimized geometry. The processing of two polymers, low-density polyethylene and polypropylene, is analyzed. A methodology based on the use of artificial intelligence (AI) techniques, namely, data mining, decision making, and evolutionary algorithms, is presented and utilized to obtain results with practical significance, based on relevant performance measures (objectives) used in the optimization. For the various case studies selected, Maillefer screws were generally advantageous for processing LDPE, while for PP, the use of both types of screws would be feasible.

4.
Sensors (Basel) ; 23(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36850895

RESUMO

With the development of mobile communications and the Internet of Things (IoT), IoT devices have increased, allowing their application in numerous areas of Industry 4.0. Applications on IoT devices are time sensitive and require a low response time, making reducing latency in IoT networks an essential task. However, it needs to be emphasized that data production and consumption are interdependent, so when designing the implementation of a fog network, it is crucial to consider criteria other than latency. Defining the strategy to deploy these nodes based on different criteria and sub-criteria is a challenging optimization problem, as the amount of possibilities is immense. This work aims to simulate a hybrid network of sensors related to public transport in the city of São Carlos - SP using Contiki-NG to select the most suitable place to deploy an IoT sensor network. Performance tests were carried out on five analyzed scenarios, and we collected the transmitted data based on criteria corresponding to devices, applications, and network communication on which we applied Multiple Attribute Decision Making (MADM) algorithms to generate a multicriteria decision ranking. The results show that based on the TOPSIS and VIKOR decision-making algorithms, scenario four is the most viable among those analyzed. This approach makes it feasible to optimally select the best option among different possibilities.

5.
Front Hum Neurosci ; 16: 811550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677206

RESUMO

The use of transcranial Electrical Stimulation (tES) in the modulation of cognitive brain functions to improve neuropsychiatric conditions has extensively increased over the decades. tES techniques have also raised new challenges associated with study design, stimulation protocol, functional specificity, and dose-response relationship. In this paper, we addressed challenges through the emerging methodology to investigate the dose-response relationship of High Definition-transcranial Direct Current Stimulation (HD tDCS), identifying the role of negative valence in tinnitus perception. In light of the neurofunctional testable framework and tES application, hypotheses were formulated to measure clinical and surrogate endpoints. We posited that conscious pairing adequately pleasant stimuli with tinnitus perception results in correction of the loudness misperception and would be reinforced by concurrent active HD-tDCS on the left Dorsolateral Prefrontal Cortex (dlPFC). The dose-response relationship between HD-tDCS specificity and the loudness perception is also modeled. We conducted a double-blind, randomized crossover pilot study with six recruited tinnitus patients. Accrued data was utilized to design a well-controlled adaptive seamless Bayesian dose-response study. The sample size (n = 47, for 90% power and 95% confidence) and optimum interims were anticipated for adaptive decision-making about efficacy, safety, and single session dose parameters. Furthermore, preliminary pilot study results were sufficient to show a significant difference (90% power, 99% confidence) within the longitudinally detected self-report tinnitus loudness between before and under positive emotion induction. This study demonstrated a research methodology used to improve emotion regulation in tinnitus patients. In the projected method, positive emotion induction is essential for promoting functional targeting under HD-tDCS anatomical specificity to indicate the efficacy and facilitate the dose-finding process. The continuous updating of prior knowledge about efficacy and dose during the exploratory stage adapts the anticipated dose-response model. Consequently, the effective dose range to make superiority neuromodulation in correcting loudness misperception of tinnitus will be redefined. Highly effective dose adapts the study to a standard randomized trial and transforms it into the confirmatory stage in which active HD-tDCS protocol is compared with a sham trial (placebo-like). Establishing the HD-tDCS intervention protocols relying on this novel method provides reliable evidence for regulatory agencies to approve or reject the efficacy and safety. Furthermore, this paper supports a technical report for designing multimodality data-driven complementary investigations in emotion regulation, including EEG-driven neuro markers, Stroop-driven attention biases, and neuroimaging-driven brain network dynamics.

6.
Sensors (Basel) ; 22(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35270840

RESUMO

The Internet of Things consists of "things" made up of small sensors and actuators capable of interacting with the environment. The combination of devices with sensor networks and Internet access enables the communication between the physical world and cyberspace, enabling the development of solutions to many real-world problems. However, most existing applications are dedicated to solving a specific problem using only private sensor networks, which limits the actual capacity of the Internet of Things. In addition, these applications are concerned with the quality of service offered by the sensor network or the correct analysis method that can lead to inaccurate or irrelevant conclusions, which can cause significant harm for decision makers. In this context, we propose two systematic methods to analyze spatially distributed data Internet of Things. We show with the results that geostatistics and spatial statistics are more appropriate than classical statistics to do this analysis.


Assuntos
Internet das Coisas , Comunicação , Redes de Comunicação de Computadores , Internet
7.
Bioelectron Med ; 7(1): 20, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34963501

RESUMO

BACKGROUND: Effectiveness of robotic therapy and transcranial direct current stimulation is conventionally assessed with clinical measures. Robotic metrics may be more objective and sensitive for measuring the efficacy of interventions on stroke survivor's motor recovery. This study investigated if robotic metrics detect a difference in outcomes, not seen in clinical measures, in a study of transcranial direct current stimulation (tDCS) preceding robotic therapy. Impact of impairment severity on intervention response was also analyzed to explore optimization of outcomes by targeting patient sub-groups. METHODS: This 2020 study analyzed data from a double-blind, sham-controlled, randomized multi-center trial conducted from 2012 to 2016, including a six-month follow-up. 82 volunteers with single chronic ischemic stroke and right hemiparesis received anodal tDCS or sham stimulation, prior to robotic therapy. Robotic therapy involved 1024 repetitions, alternating shoulder-elbow and wrist robots, for a total of 36 sessions. Shoulder-elbow and wrist kinematic and kinetic metrics were collected at admission, discharge, and follow-up. RESULTS: No difference was detected between the tDCS or sham stimulation groups in the analysis of robotic shoulder-elbow or wrist metrics. Significant improvements in all metrics were found for the combined group analysis. Novel wrist data showed smoothness significantly improved (P < ·001) while submovement number trended down, overlap increased, and interpeak interval decreased. Post-hoc analysis showed only patients with severe impairment demonstrated a significant difference in kinematics, greater for patients receiving sham stimulation. CONCLUSIONS: Robotic data confirmed results of clinical measures, showing intensive robotic therapy is beneficial, but no additional gain from tDCS. Patients with severe impairment did not benefit from the combined intervention. Wrist submovement characteristics showed a delayed pattern of motor recovery compared to the shoulder-elbow, relevant to intensive intervention-related recovery of upper extremity function in chronic stroke. TRIAL REGISTRATION: http://www.clinicaltrials.gov . Actual study start date September 2012. First registered on 15 November 2012. Retrospectively registered. Unique identifiers: NCT01726673 and NCT03562663 .

8.
Front Neurosci ; 15: 628836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366767

RESUMO

Insomnia is a widespread neuropsychological sleep-related disorder known to result in various predicaments including cognitive impairments, emotional distress, negative thoughts, and perceived sleep insufficiency besides affecting the incidence and aggravation of other medical disorders. Despite the available insomnia-related theoretical cognitive models, clinical studies, and related guidelines, an evidence-based conceptual framework for a personalized approach to insomnia seems to be lacking. This study proposes a conceptual cognitive framework (CCF) providing insight into cognitive mechanisms involved in the predisposition, precipitation, and perpetuation of insomnia and consequent cognitive deficits. The current CCF for insomnia relies on evaluative conditional learning and appraisal which generates negative valence (emotional value) and arousal (cognitive value). Even with the limitations of this study, the suggested methodology is well-defined, reproducible, and accessible can help foster future high-quality clinical databases. During clinical insomnia but not the neutral one, negative mood (trait-anxiety) causes cognitive impairments only if mediating with a distorted perception of insomnia ( Ind-1 = 0.161, 95% CI 0.040-0.311). Further real-life testing of the CCF is intended to formulate a meticulous, decision-supporting platform for clinical interventions. Furthermore, the suggested methodology is expected to offer a reliable platform for CCF-development in other cognitive impairments and support the causal clinical data models. It may also improve our knowledge of psychological disturbances and complex comorbidities to help design rehabilitation interventions and comprehensive frameworks in line with the "preventive medicine" policies.

9.
PLoS One ; 15(7): e0235147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32609749

RESUMO

Digital datasets in several health care facilities, as hospitals and prehospital services, accumulated data from thousands of patients for more than a decade. In general, there is no local team with enough experts with the required different skills capable of analyzing them in entirety. The integration of those abilities usually demands a relatively long-period and is cost. Considering that scenario, this paper proposes a new Feature Sensitivity technique that can automatically deal with a large dataset. It uses a criterion-based sampling strategy from the Optimization based on Phylogram Analysis. Called FS-opa, the new approach seems proper for dealing with any types of raw data from health centers and manipulate their entire datasets. Besides, FS-opa can find the principal features for the construction of inference models without depending on expert knowledge of the problem domain. The selected features can be combined with usual statistical or machine learning methods to perform predictions. The new method can mine entire datasets from scratch. FS-opa was evaluated using a relatively large dataset from electronic health records of mental disorder prehospital services in Brazil. Cox's approach was integrated to FS-opa to generate survival analysis models related to the length of stay (LOS) in hospitals, assuming that it is a relevant aspect that can benefit estimates of the efficiency of hospitals and the quality of patient treatments. Since FS-opa can work with raw datasets, no knowledge from the problem domain was used to obtain the preliminary prediction models found. Results show that FS-opa succeeded in performing a feature sensitivity analysis using only the raw data available. In this way, FS-opa can find the principal features without bias of an inference model, since the proposed method does not use it. Moreover, the experiments show that FS-opa can provide models with a useful trade-off according to their representativeness and parsimony. It can benefit further analyses by experts since they can focus on aspects that benefit problem modeling.


Assuntos
Mineração de Dados , Registros Eletrônicos de Saúde , Transtornos Mentais/diagnóstico , Adulto , Algoritmos , Brasil/epidemiologia , Mineração de Dados/métodos , Conjuntos de Dados como Assunto , Humanos , Transtornos Mentais/epidemiologia , Transtornos Mentais/terapia , Modelos de Riscos Proporcionais
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5196-5199, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947029

RESUMO

Gender-related anatomical differences have been reported with respect to brain and cerebrospinal fluid. The cortical induced electric field (EF) in transcranial direct current stimulation (tDCS) depends both on the dose (electrode montage and applied current) and the individual anatomical details. Therefore in spite of fixed dose, one can expect gender-related differences to impact induced EF which in turn would influence tDCS outcome. The abundance of promise with tDCS in both research and clinical domains is also accompanied with variability in response. The in-constant induced cortical EF is one of the main contributors of this variability.The aim of this study is to quantify the effects of the gender-related morphological changes on tDCS induced cortical EF. MRI data were obtained for 10 healthy individuals (5 males: M1-M5 and 5 females: F1-F5) spanning ages 27-47 years. Finite element models derived from the individual MRI and simulating the classic left motor cortex-contralateral supraorbital (C3-SO) montage were used to predict the cortical EF. The percentage tissue volume were also determined to illustrate anatomical differences in the dataset considered.Findings indicate that induced EF is higher in female head models on an average than male head models across several metrics. While the average peak EF value in female head models was comparable to that of male head models, the mean and median values were 11.6% and 10% higher. On an individual basis, the highest peak value was observed in a female subject F3 (0.83 V/m) while the lowest peak value was observed in male subject M2 (0.34 V/m) -indicating a variation of ~2.4-fold across the dataset considered. The average gray matter percentage volume in females was 11.6% higher than in males. The average white matter percentage volume was 8.7% higher in females while negligible CSF percentage volume difference was noted across gender. The results of our study indicate gender-related differences in tDCS induced current flow and quantify the extent of this variation.


Assuntos
Encéfalo/anatomia & histologia , Fatores Sexuais , Estimulação Transcraniana por Corrente Contínua , Adulto , Líquido Cefalorraquidiano , Feminino , Substância Cinzenta/anatomia & histologia , Cabeça/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor
11.
Front Neurol ; 9: 825, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459697

RESUMO

Background: Using conventional tDCS over the temporo-parietal junction (TPJ) we previously reported that it is possible to manipulate subjective visual vertical (SVV) and postural control. We also demonstrated that high-definition tDCS (HD-tDCS) can achieve substantially greater cortical stimulation focality than conventional tDCS. However, it is critical to establish dose-response effects using well-defined protocols with relevance to clinically meaningful applications. Objective: To conduct three pilot studies investigating polarity and intensity-dependent effects of HD-tDCS over the right TPJ on behavioral and physiological outcome measures in healthy subjects. We additionally aimed to establish the feasibility, safety, and tolerability of this stimulation protocol. Methods: We designed three separate randomized, double-blind, crossover phase I clinical trials in different cohorts of healthy adults using the same stimulation protocol. The primary outcome measure for trial 1 was SVV; trial 2, weight-bearing asymmetry (WBA); and trial 3, electroencephalography power spectral density (EEG-PSD). The HD-tDCS montage comprised a single central, and 3 surround electrodes (HD-tDCS3x1) over the right TPJ. For each study, we tested 3x2 min HD-tDCS3x1 at 1, 2 and 3 mA; with anode center, cathode center, or sham stimulation, in random order across days. Results: We found significant SVV deviation relative to baseline, specific to the cathode center condition, with consistent direction and increasing with stimulation intensity. We further showed significant WBA with direction governed by stimulation polarity (cathode center, left asymmetry; anode center, right asymmetry). EEG-PSD in the gamma band was significantly increased at 3 mA under the cathode. Conclusions: The present series of studies provide converging evidence for focal neuromodulation that can modify physiology and have behavioral consequences with clinical potential.

12.
Heliyon ; 4(7): e00690, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30073212

RESUMO

Science Gateways have been widely accepted as an important tool in academic research, due to their flexibility, simple use and extension. However, such systems may yield performance traps that delay work progress and cause waste of resources or generation of poor scientific results. This paper addresses an investigation on some of the failures in a Galaxy system and analyses of their impacts. The use case is based on protein structure prediction experiments performed. A novel science gateway component is proposed towards the definition of the relation between general parameters and capacity of machines. The machine-learning strategies used appoint the best machine setup in a heterogeneous environment and the results show a complete overview of Galaxy, a diverse platform organization, and the workload behavior. A Support Vector Regression (SVR) model generated and based on a historic data-set provided an excellent learning module and proved a varied platform configuration is valuable as infrastructure in a science gateway. The results revealed the advantages of investing in local cluster infrastructures as a base for scientific experiments.

13.
Front Neurosci ; 10: 370, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27594822

RESUMO

Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the "sourceless" sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be associated with aversive stimuli similar to abnormal neural activity in generating the phantom sound. Cognitive and emotional reactions depend on general personality biases toward evaluative conditioning combined with a cognitive-emotional negative appraisal of stimuli such as the case of people with present hypochondria. We acknowledge that the projected Neurofunctional Tinnitus Model does not cover all tinnitus variations and patients. To support our model, we present evidence from several studies using neuroimaging, electrophysiology, brain lesion, and behavioral techniques.

14.
Evol Comput ; 23(1): 1-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24437665

RESUMO

Structured evolutionary algorithms have been investigated for some time. However, they have been under explored especially in the field of multi-objective optimization. Despite good results, the use of complex dynamics and structures keep the understanding and adoption rate of structured evolutionary algorithms low. Here, we propose a general subpopulation framework that has the capability of integrating optimization algorithms without restrictions as well as aiding the design of structured algorithms. The proposed framework is capable of generalizing most of the structured evolutionary algorithms, such as cellular algorithms, island models, spatial predator-prey, and restricted mating based algorithms. Moreover, we propose two algorithms based on the general subpopulation framework, demonstrating that with the simple addition of a number of single-objective differential evolution algorithms for each objective, the results improve greatly, even when the combined algorithms behave poorly when evaluated alone at the tests. Most importantly, the comparison between the subpopulation algorithms and their related panmictic algorithms suggests that the competition between different strategies inside one population can have deleterious consequences for an algorithm and reveals a strong benefit of using the subpopulation framework.


Assuntos
Algoritmos , Metodologias Computacionais , Modelos Teóricos , Simulação por Computador
15.
PLoS One ; 9(12): e114145, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25493625

RESUMO

Several variable selection algorithms in multivariate calibration can be accelerated using Graphics Processing Units (GPU). Among these algorithms, the Firefly Algorithm (FA) is a recent proposed metaheuristic that may be used for variable selection. This paper presents a GPU-based FA (FA-MLR) with multiobjective formulation for variable selection in multivariate calibration problems and compares it with some traditional sequential algorithms in the literature. The advantage of the proposed implementation is demonstrated in an example involving a relatively large number of variables. The results showed that the FA-MLR, in comparison with the traditional algorithms is a more suitable choice and a relevant contribution for the variable selection problem. Additionally, the results also demonstrated that the FA-MLR performed in a GPU can be five times faster than its sequential implementation.


Assuntos
Algoritmos , Gráficos por Computador , Calibragem , Análise Multivariada , Software
16.
Proteins ; 82(9): 1850-68, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24677212

RESUMO

The protein structure prediction problem continues to elude scientists. Despite the introduction of many methods, only modest gains were made over the last decade for certain classes of prediction targets. To address this challenge, a social-media based worldwide collaborative effort, named WeFold, was undertaken by 13 labs. During the collaboration, the laboratories were simultaneously competing with each other. Here, we present the first attempt at "coopetition" in scientific research applied to the protein structure prediction and refinement problems. The coopetition was possible by allowing the participating labs to contribute different components of their protein structure prediction pipelines and create new hybrid pipelines that they tested during CASP10. This manuscript describes both successes and areas needing improvement as identified throughout the first WeFold experiment and discusses the efforts that are underway to advance this initiative. A footprint of all contributions and structures are publicly accessible at http://www.wefold.org.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Comportamento Cooperativo , Estrutura Terciária de Proteína , Proteínas/ultraestrutura , Humanos , Modelos Moleculares , Projetos de Pesquisa , Jogos de Vídeo
17.
J Comput Chem ; 34(20): 1719-34, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23666867

RESUMO

This article focuses on the development of an approach for ab initio protein structure prediction (PSP) without using any earlier knowledge from similar protein structures, as fragment-based statistics or inference of secondary structures. Such an approach is called purely ab initio prediction. The article shows that well-designed multiobjective evolutionary algorithms can predict relevant protein structures in a purely ab initio way. One challenge for purely ab initio PSP is the prediction of structures with ß-sheets. To work with such proteins, this research has also developed procedures to efficiently estimate hydrogen bond and solvation contribution energies. Considering van der Waals, electrostatic, hydrogen bond, and solvation contribution energies, the PSP is a problem with four energetic terms to be minimized. Each interaction energy term can be considered an objective of an optimization method. Combinatorial problems with four objectives have been considered too complex for the available multiobjective optimization (MOO) methods. The proposed approach, called "Multiobjective evolutionary algorithms with many tables" (MEAMT), can efficiently deal with four objectives through the combination thereof, performing a more adequate sampling of the objective space. Therefore, this method can better map the promising regions in this space, predicting structures in a purely ab initio way. In other words, MEAMT is an efficient optimization method for MOO, which explores simultaneously the search space as well as the objective space. MEAMT can predict structures with one or two domains with RMSDs comparable to values obtained by recently developed ab initio methods (GAPFCG , I-PAES, and Quark) that use different levels of earlier knowledge.


Assuntos
Algoritmos , Biologia Computacional , Simulação por Computador , Proteínas/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica , Eletricidade Estática
18.
Genet. mol. biol ; 31(4): 974-981, Sept.-Dec. 2008. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-501455

RESUMO

We propose a new distance algorithm for phylogenetic estimation based on Ant Colony Optimization (ACO), named Ant-Based Phylogenetic Reconstruction (ABPR). ABPR joins two taxa iteratively based on evolutionary distance among sequences, while also accounting for the quality of the phylogenetic tree built according to the total length of the tree. Similar to optimization algorithms for phylogenetic estimation, the algorithm allows exploration of a larger set of nearly optimal solutions. We applied the algorithm to four empirical data sets of mitochondrial DNA ranging from 12 to 186 sequences, and from 898 to 16,608 base pairs, and covering taxonomic levels from populations to orders. We show that ABPR performs better than the commonly used Neighbor-Joining algorithm, except when sequences are too closely related (e.g., population-level sequences). The phylogenetic relationships recovered at and above species level by ABPR agree with conventional views. However, like other algorithms of phylogenetic estimation, the proposed algorithm failed to recover expected relationships when distances are too similar or when rates of evolution are very variable, leading to the problem of long-branch attraction. ABPR, as well as other ACO-based algorithms, is emerging as a fast and accurate alternative method of phylogenetic estimation for large data sets.


Assuntos
Animais , Algoritmos , DNA Mitocondrial , Formigas/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...