Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535440

RESUMO

The microalgae Phaeodactylum tricornutum (PT) is distinguished by its rich nutrient profile, characterized by well-documented neuroprotective activities, including fucoxanthin (FX), a major carotenoid and polyunsaturated omega-3 fatty acids (n-3 PUFA). The current study aims to evaluate the protective effects of a standardized extract of PT (Mi136) containing 2% FX on cognitive function, oxidative stress, and inflammation parameters in a mouse model of accelerated aging. Seventy-two (72) male mice were randomly assigned to the blank control group (BC), negative control group (NC), and four similar microalgae extract of PT groups (branded as BrainPhyt™) with different human equivalent doses to evaluate potential dose-response effects. From day 01 to day 51, mice in the BC group were injected with a 0.9% normal saline solution, while mice in all other groups were subcutaneously injected with D-galactose (D-Gal) at a dose of 150 mg/kg once per day, five days per week. Results indicated that, for the three higher microalgae extract of PT dose groups, spatial cognitive function, swim latency, and step-through latency impairments induced by chronic D-Gal intoxication were significantly and fully inhibited, with mean values similar to those in the BC group during each day of testing. Similar benefits were observed in biochemical analysis, specifically regarding brain and plasma levels of lipid peroxidation, TNF-α, and IL-6 markers. These data underscore the positive effects of a standardized extract of PT containing 2% FX on cognitive function parameters such as spatial working memory, long-term memory, and short-term memory through the regulation of oxidative stress and inflammation pathways.


Assuntos
Disfunção Cognitiva , Ácidos Graxos Ômega-3 , Microalgas , Humanos , Masculino , Animais , Camundongos , Galactose , Cognição , Inflamação
2.
Mar Drugs ; 18(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861403

RESUMO

Marine microalgae are known to be a source of bioactive molecules of interest to human health, such as n-3 polyunsaturated fatty acids (n-3 PUFAs) and carotenoids. The fact that some of these natural compounds are known to exhibit anti-inflammatory, antioxidant, anti-proliferative, and apoptosis-inducing effects, demonstrates their potential use in preventing cancers and cardiovascular diseases (CVDs). Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH), is an ubiquitous environmental pollutant known to contribute to the development or aggravation of human diseases, such as cancer, CVDs, and immune dysfunction. Most of these deleterious effects are related to the activation of the polycyclic aromatic hydrocarbon receptor (AhR). In this context, two ethanolic microalgal extracts with concentrations of 0.1 to 5 µg/mL are tested, Ostreoccoccus tauri (OT) and Phaeodactylum tricornutum (PT), in order to evaluate and compare their potential effects towards B[a]P-induced toxicity in endothelial HMEC-1 cells. Our results indicate that the OT extract can influence the toxicity of B[a]P. Indeed, apoptosis and the production of extracellular vesicles were decreased, likely through the reduction of the expression of CYP1A1, a B[a]P bioactivation enzyme. Furthermore, the B[a]P-induced expression of the inflammatory cytokines IL-8 and IL1-ß was reduced. The PT extract only inhibited the expression of the B[a]P-induced cytokine IL-8 expression. The OT extract therefore seems to be a good candidate for counteracting the B[a]P toxicity.


Assuntos
Benzo(a)pireno/toxicidade , Produtos Biológicos/farmacologia , Microalgas/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Citocinas/efeitos dos fármacos , Células Endoteliais , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Humanos , Oceanos e Mares
3.
Molecules ; 23(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641444

RESUMO

By their autotrophic nature and their molecular richness, microalgae are serious assets in the context of current environmental and societal challenges. Some species produce both omega-3 long chain polyunsaturated fatty acids (PUFAs) and xanthophylls, two molecular families widely studied for their bioactivities in the fields of nutrition and cosmetics. Whereas most studies separately deal with the two families, synergies could be exploited with extracts containing both PUFAs and xanthophylls. The purpose of our work was to determine cost effective and eco-friendly parameters for their co-extraction. The effect of several parameters (solvent, solvent/biomass ratio, temperature, duration) were studied, using two microalgal species, the non-calcifying Haptophyta Tisochrysis lutea, and the diatom Phaeodactylum tricornutum, that presents a silicified frustule. Analyses of PUFAs and fucoxanthin (Fx), the main xanthophyll, allowed to compare kinetics and extraction yields between experimental protocols. Co-extraction yields achieved using 96% ethanol as solvent were 100% for Fx and docosahexaenoic acid (DHA) in one hour from T. lutea biomass, and respectively 95% and 89% for Fx and eicosapentaenoic acid (EPA) in eight hours from P. tricornutum. These conditions are compatible with industrial applications.


Assuntos
Ácidos Graxos Insaturados/isolamento & purificação , Microalgas/química , Xantofilas/isolamento & purificação , Biomassa , Diatomáceas/química , Ácidos Graxos Insaturados/química , Haptófitas/química , Solventes , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...