Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 753: 141995, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32892001

RESUMO

The most spread groundwater-dependent ecosystems in the River Po valley are semi-natural lowland springs called "fontanili". They provide specific habitats and support high biodiversity, but are often strongly impaired by agricultural pollution. In the present study we seasonally monitored the discharge and nitrogen concentration of 48 fontanili from the Adda and the Ticino river basins. We observed a wide spatial variability of both NO3-N concentrations and flows. The annual NO3-N loads ranged from <1 to 75 t y-1 and < 1 to 29 t y-1 in the Adda and Ticino basins respectively. In the springs characterized by variable discharge the N loads were exported mostly during the summer season when water table level was elevated mainly due to irrigation. Upscaling the mean NO3-N load to each river catchment based on the total number of springs, we obtained an aerial export of 33.2 ± 6.0 and 12.5 ± 3.2 kg y-1 ha-1. Such loads accounted for the 30.4 and 21.5% of the N surplus estimated for the Adda and Ticino basins respectively. Random Forest analysis was performed to identify the most important environmental variables influencing the nitrate contamination in the spring waters. A total of 22 explanatory variables related to N sources, land uses, intrinsic hydrogeologic and soil proprieties, in "situ" and remotely sensed variables were considered. The percent of soil cultivated with maize in a 500 m radius buffer area surrounding the sampling site, the N from manure and the distance of each spring from the main river were the most effective factors in controlling the NO3-N concentration in the fontanili water. The outcomes of this work open up to achievable management prospects for the protection and recovery of fontanili waters, and can be particularly useful for water managers in identifying areas and sites where restoration plans should be a priority.

2.
Sci Total Environ ; 466-467: 924-38, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23978586

RESUMO

This study aims at evaluating sources and processes affecting NO3(-) concentrations in the Oglio River. Five sampling campaigns considered the main watercourse, tributaries, point pollution sources, springs, and groundwater. Physico-chemical parameters, N forms, B, Sr(2+), stable isotopes (δ(2)HH2O, δ(18)OH2O, δ(15)NNO3, δ(18)ONO3, δ(11)B) and discharge were measured. Hydrological modelling was performed using mass balance and End Member Mixing Analysis equations. During the irrigation period, in the upstream reach, up to 90% of the natural river flow is diverted for irrigation and industrial purposes; excess water drained from agricultural fields is returned to river in the downstream reach. Results evidenced, in the middle reach, a large input of NO3(-)-rich groundwater which could be quantified using hydrological modelling. Groundwater inputs are responsible for the sharp, tenfold increase in NO3(-) in the river water, from 2.2-4.4 up to 33.5 mgL(-1), and are more evident in summer, when discharge is lower. Nevertheless, river water preserves its natural B isotopic composition, indicating that the two tracers do not have a common origin and are not co-migrant. In the lower plain, surface-groundwater interconnections and human disturbances in the water cycle favour the recycling of the compounds in the environment, and lead to a similarity in composition of the different water bodies (Oglio River, tributaries and groundwater). The long lasting agronomical practices have profoundly modified the surface-groundwater equilibrium and chemical characteristics, resulting in a highly buffered system. Infiltrating irrigation water leaches down NO3(-) which is subsequently denitrified; when returned to the Oglio River, groundwater modifies the river water composition by dilution, in the case of NO3(-), or by addition, for other constituents (e.g. Cl(-), B). The results of this study indicate that, in order to reduce the NO3(-) transport towards the Adriatic Sea, groundwater contamination should be addressed first, with expected long recovery times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA