Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 983855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246232

RESUMO

Sustainable peat alternatives, such as composts and management residues, are considered to have beneficial microbiological characteristics compared to peat-based substrates. Studies comparing microbiological characteristics of these three types of biomass are, however, lacking. This study examined if and how microbiological characteristics of subtypes of composts and management residues differ from peat-based substrates, and how feedstock and (bio)chemical characteristics drive these characteristics. In addition, microbiome characteristics were evaluated that may contribute to plant growth and health. These characteristics include: genera associated with known beneficial or harmful microorganisms, microbial diversity, functional diversity/activity, microbial biomass, fungal to bacterial ratio and inoculation efficiency with the biocontrol fungus Trichoderma harzianum. Bacterial and fungal communities were studied using 16S rRNA and ITS2 gene metabarcoding, community-level physiological profiling (Biolog EcoPlates) and PLFA analysis. Inoculation with T. harzianum was assessed using qPCR. Samples of feedstock-based subtypes of composts and peat-based substrates showed similar microbial community compositions, while subtypes based on management residues were more variable in their microbial community composition. For management residues, a classification based on pH and hemicellulose content may be relevant for bacterial and fungal communities, respectively. Green composts, vegetable, fruit and garden composts and woody composts show the most potential to enhance plant growth or to suppress pathogens for non-acidophilic plants, while grass clippings, chopped heath and woody fractions of compost show the most potential for blends for calcifuge plants. Fungal biomass was a suitable predictor for inoculation efficiency of composts and management residues.

2.
Front Microbiol ; 12: 643679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897654

RESUMO

Three characteristics are considered key for optimal use of composts in growing media: maturity, pH and organic matter content. Maturation is a critical step in the processing of composts contributing to compost quality. Blending of composts with chopped heath biomass, sieving out the larger fraction of composts and acidification of composts by adding elemental sulfur may be used either to increase organic matter content or to reduce pH for a better fit in growing media. While several studies have shown the effectiveness of these treatments to improve the use of composts in growing media, the effect of these treatments on the compost microbiome has merely been assessed before. In the present study, five immature composts were allowed to mature, and were subsequently acidified, blended or sieved. Bacterial and fungal communities of the composts were characterized and quantified using 16S rRNA and ITS2 gene metabarcoding and phospholipid fatty acid analysis. Metabolic biodiversity and activity were analyzed using Biolog EcoPlates. Compost batch was shown to be more important than maturation or optimization treatments to determine the compost microbiome. Compost maturation increased microbial diversity and favored beneficial microorganisms, which may be positive for the use of composts in growing media. Blending of composts increased microbial diversity, metabolic diversity, and metabolic activity, which may have a positive effect in growing media. Blending may be used to modify the microbiome to a certain degree in order to optimize microbiological characteristics. Acidification caused a decrease in bacterial diversity and microbial activity, which may be negative for the use in growing media, although the changes are limited. Sieving had limited effect on the microbiome of composts. Because of the limited effect on the microbiome, sieving of composts may be used flexible to improve (bio)chemical characteristics. This is the first study to assess the effects of maturation and optimization treatments to either increase organic matter content or lower pH in composts on the compost microbiome.

3.
J Environ Manage ; 277: 111444, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059323

RESUMO

Previous research has demonstrated that composts (COM) and woody residues from nature management (MR) are potential peat replacers for growing media, but their compositions are highly variable. Our goal is to make growing media more sustainable by optimizing the selection of local and sustainable alternatives for peat. Different batches of COM and MR were incubated to assess the microbial activity based on (1) the N drawdown risk, (2) the C mineralization and (3) the inoculation efficiency of a commercially available biocontrol fungus. The various batches were characterized based on biochemical, chemical (pH, available and total nutrients) and microbiological biomass analysis. COM and MR were scored based on chemical or stability characteristics to assess their suitability to replace peat, lime and fertilizers in growing media. This score allowed for a clear differentiation between the materials; MR received higher scores on average than COM. Five composts were further tested for the effect of storage after blending with an acidic MR, acidification with elemental S, or removal of the finer fraction. One batch of chopped soft rush was acidified with elemental S. Blending and acidification were the most effective treatments as they resulted in a clear increase of the suitability score.


Assuntos
Compostagem , Fertilizantes , Concentração de Íons de Hidrogênio , Solo , Madeira
4.
Food Chem Toxicol ; 79: 70-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25455887

RESUMO

This study evaluates the attitudes and perspectives of different stakeholder groups (agricultural producers, pesticide manufacturers, trading companies, retailers, regulators, food safety authorities, scientists and NGOs) towards the concepts of cumulative and aggregate exposure assessment of pesticides by means of qualitative in-depth interviews (n = 15) and a quantitative stakeholder survey (n = 65). The stakeholders involved generally agreed that the use of chemical pesticides is needed, primarily for meeting the need of feeding the growing world population, while clearly acknowledging the problematic nature of human exposure to pesticide residues. Current monitoring was generally perceived to be adequate, but the timeliness and consistency of monitoring practices across countries were questioned. The concept of cumulative exposure assessment was better understood by stakeholders than the concept of aggregate exposure assessment. Identified pitfalls were data availability, data limitations, sources and ways of dealing with uncertainties, as well as information and training needs. Regulators and food safety authorities were perceived as the stakeholder groups for whom cumulative and aggregate pesticide exposure assessment methods and tools would be most useful and acceptable. Insights obtained from this exploratory study have been integrated in the development of targeted and stakeholder-tailored dissemination and training programmes that were implemented within the EU-FP7 project ACROPOLIS.


Assuntos
Dieta/efeitos adversos , Exposição Ambiental/efeitos adversos , Contaminação de Alimentos , Conhecimentos, Atitudes e Prática em Saúde , Modelos Estatísticos , Resíduos de Praguicidas/toxicidade , Praguicidas/toxicidade , Indústria Química/educação , Estudos Transversais , Ecotoxicologia/educação , União Europeia , Fazendeiros/educação , Indústria Alimentícia/educação , Inocuidade dos Alimentos , Humanos , Avaliação das Necessidades , Medição de Risco , Inquéritos e Questionários , Incerteza , Recursos Humanos
5.
Pest Manag Sci ; 68(8): 1130-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22689544

RESUMO

BACKGROUND: Farmers are being called to use plant protection products (PPPs) more consciously and adopt more sustainable crop protection strategies. Indicators will help farmers to monitor their progress towards sustainability and will support their learning process. Talking the indicators through in farmers' discussion groups and the resulting peer encouragement will foster knowledge acquirement and can lead to changes in attitudes, norms, perception and behaviour. RESULTS: Using a participatory approach, a conceptual framework for on-farm sustainable crop protection practices was created. The same participatory approach was used to design a dual indicator set, which pairs a pesticide impact assessment system (PIAS) with a farm inquiry. The PIAS measures the risk for human health and the environment exerted by chemical crop protection. The inquiry reveals the farmers' response to this risk, both in terms of the actions they take and their knowledge, awareness and attitude. CONCLUSIONS: The dual indicator set allows for implementation in four tiers, each representing increased potential for monitoring and social learning. The indicator set can be adjusted on the basis of new findings, and the participatory approach can be extrapolated to other situations.


Assuntos
Agricultura , Produtos Agrícolas/crescimento & desenvolvimento , Atitude , Produtos Agrícolas/efeitos dos fármacos , Humanos , Exposição por Inalação , Conhecimento , Percepção , Praguicidas/toxicidade , Fatores de Risco , Recursos Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...