Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biopolymers ; 50(3): 303-18, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10397791

RESUMO

We demonstrate that differential scanning calorimetry (DSC) can be used to yield high-resolution melting profiles for DNA plasmids that agree in all major features with the corresponding plasmid melting profiles derived using more traditional optical techniques. We further demonstrate that by combining information derived from both calorimetric and optical melting profiles one can glean insights that are unavailable from either melting curve alone. By using both optical and calorimetric observables, we show how one can resolve, identify, and measure the thermodynamic properties of particular sequences/domains of interest within a plasmid. We also show that complementary DSC and optical melting studies on plasmids with and without specifically designed inserts can provide fundamental advantages over the corresponding melting studies on other model system constructs for thermodynamically characterizing nucleic acid sequences/structures.


Assuntos
Plasmídeos/química , Varredura Diferencial de Calorimetria , DNA/química , Escherichia coli , Cinética , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Plasmídeos/genética , Temperatura , Termodinâmica
2.
Bioinformatics ; 15(5): 370-5, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10366657

RESUMO

MOTIVATION: MELTSIM is a windows-based statistical mechanical program for simulating melting curves of DNAs of known sequence and genomic dimensions under different conditions of ionic strength with great accuracy. The program is useful for mapping variations of base compositions of sequences, conducting studies of denaturation, establishing appropriate conditions for hybridization and renaturation, determinations of sequence complexity, and sequence divergence. RESULTS: Good agreement is achieved between experimental and calculated melting curves of plasmid, bacterial, yeast and human DNAs. Denaturation maps that accompany the calculated curves indicate non-coding regions have a significantly lower (G+C) composition than coding regions in all species examined. Curves of partially sequenced human DNA suggest the current database may be heavily biased with coding regions, and excluding large (A+T)-rich elements. AVAILABILITY: MELTSIM 1.0 is available at: //www.uml.edu/Dept/Chem/UMLBIC/Apps/MEL TSIM/MELTSIM-1.0-Win/meltsim. zip. Melting curve plots in this paper were made with GNUPLOT 3.5, available at: http://www.cs.dartmouth.edu/gnuplot_inf o.html Contact : blake@maine.maine.edu;


Assuntos
Simulação por Computador , DNA/análise , Modelos Estatísticos , Software , Composição de Bases , DNA Bacteriano/análise , DNA Fúngico/análise , Humanos , Desnaturação de Ácido Nucleico
3.
Nucleic Acids Res ; 26(14): 3323-32, 1998 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-9649614

RESUMO

Tij and Delta Hij for stacking of pair i upon j in DNA have been obtained over the range 0.034-0.114 M Na+from high-resolution melting curves of well-behaved synthetic tandemly repeating inserts in recombinant pN/MCS plasmids. Results are consistent with neighbor-pair thermodynamic additivity, where the stability constant, sij , for different domains of length N depend quantitatively on the product of stability constants for each individual pair in domains, sijN . Unit transition enthalpies with average errors less than +/-5%, were determined by analysis of two-state equilibria associated with the melting of internal domains and verified from variations of Tij with [Na+]. Enthalpies increase with Tij , in close agreement with the empirical function: Delta Hij = 52.78@ Tij - 9489, and in parallel with a smaller increase in Delta Sij . Delta Hij and Delta Sij are in good agreement with the results of an extensive compilation of published Delta Hcal and Delta Scal for synthetic and natural DNAs. Neighbor-pair additivity was also observed for (dA@dT)-tracts at melting temperatures; no evidence could be detected of the familiar and unusual structural features that characterize tracts at lower temperatures. The energetic effects of loops were determined from the melting behavior of repeating inserts installed between (G+C)-rich barrier domains in the pN/MCS plasmids. A unique set of values for the cooperativity, loop exponent and stiffness parameters were found applicable to internal domains of all sizes and sequences. Statistical mechanical curves calculated with values of Tij([Na+]) , Delta Hij and these loop parameters are in good agreement with observation.


Assuntos
DNA/química , Termodinâmica , Sequência de Bases , Soluções Tampão , Plasmídeos
4.
Nucleic Acids Res ; 24(11): 2095-103, 1996 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-8668541

RESUMO

Formamide lowers melting temperatures (Tm) of DNAs linearly by 2.4-2.9 degrees C/mole of formamide (C(F)) depending on the (G+C) composition, helix conformation and state of hydration. The inherent cooperativity of melting is unaffected by the denaturant. dTm/dC(F)for 11 plasmid domains of 0.23 < (G+C)<0.71 generally fit to a linear dependence on (G+C)-content, which, however, is consistent with a (G+C)-independent alteration in the apparent equilibrium constant for thermally induced helix <--> coil transitions. Results indicate that formamide has a destabilizing effect on the helical state, and that sequence-dependent variations in hydration patterns are primarily responsible for small variations in sensitivity to the denaturant. The average unit transition enthalpy delta H(m)[see text for complete expression], exhibits a biphasic dependence on formamide concentration. The initial drop of -0.8 kcal/mol bp at low formamide concentrations is attributable to a delta delta H(m)[see text for complete expression], for exchange of solvent in the vicinity of the helix: displacement by formamide of weakly bound hydrate or counterion. The phenomenological effects are equivalent to lowering the bulk counterion concentration. Poly(dA.dT) exhibits a much lower sensitivity to formamide, due to the specific pattern of tightly bound, immobilized water bridges that buttress the helix from within the narrow minor groove. Tracts of three (A.T)-pairs behave normally, but tracts of six exhibit the same level of reduced sensitivity as the polymer, suggesting a conformational shift as tracts are elongated beyond some critical length [McCarthy J.G. and Rich,A. (1991) Nucleic Acids Res. 19, 3421-3429].


Assuntos
DNA/química , DNA/efeitos dos fármacos , Formamidas/farmacologia , Composição de Bases , Sequência de Bases , Estabilidade de Medicamentos , Temperatura Alta , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Plasmídeos , Poli dA-dT/química , Termodinâmica
5.
J Biol Chem ; 266(23): 15160-9, 1991 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-1869547

RESUMO

Variations in base mono- and dipoles result in variations in stacking energies for the 10 unique neighbor pairs in DNA. Stacking energies for pair M on N, expressed as TMN, were derived by matrix decomposition of a large set of linear algebraic expressions relating the measured Tm for subtransitions emanating from large polymeric DNAs, and the fractional neighbor frequencies, fMN, for the domains responsible for the transitions, Tm = sigma fMNTMN. Tm were determined for subtransitions that dissociate in approximately all-or-none fashion in high resolution melting profiles of partially deleted and recombinant forms of pBR322 DNA. Three different analytical maneuvers were undertaken to resolve subtransitions: site-specific cleavage of domains; deletion of domains; and addition of domains. Three dozen domains of widely divergent, quasi-random neighbor frequencies were identified and assigned, resulting in a unique set of values for TMN with standard deviation, sigma = +/- 0.23 degree C. The average difference between calculated and experimental Tm for domains is only +/- 0.17 degree C, indicating that the thermodynamic properties of these domains are not in any way unusual. Assuming delta S to be constant for all pairs, the corresponding delta HMN are found to have a precision of +/- 10 calories.mol-1 and an accuracy of +/- 606 calories.mol-1. TMN used to calculate melting curves by statistical mechanical analysis of sequences of the different plasmid specimens in this study were in quantitative agreement with observed curves for most sequences. These TMN differ significantly from those determined previously and also correlate poorly with values determined by quantum chemical analysis. Stabilities of neighbor pairs, expressed as the difference in free energy between that for a given pair (MN) and that for the average of like pairs (M, N), depend on the relationship of stacked purines and pyrimidines as follows. delta delta Gpu-py(-466 cal) greater than delta delta Gpu-pu(+52 cal) greater than delta delta Gpy-pu(+335 cal) Differences between experimental Tm and Tm calculated with TMN for the isolated neighbor pairs in the B-conformation are useful in the identification of altered structures and unusual modes of dissociation of helixes. A significantly higher Tm is observed for the highly biased repeated sequence synthetic helixes dA.dT, d(AGC).d(GCT), and d(GAT).d(ATC), reflecting auxiliary sources of stability such as bifurcated hydrogen bonds and/or altered structures for these helixes.


Assuntos
DNA/química , Sequência de Aminoácidos , Sequência de Bases , Eletroquímica , Dados de Sequência Molecular , Plasmídeos , Temperatura , Termodinâmica
6.
Biopolymers ; 29(2): 393-405, 1990 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-2331505

RESUMO

The Tm of internal loop-forming (dA.dT)N domains in pBR322 DNA has been measured over a tenfold range of [Na+]. The slopes SN = dTm/d log [Na+] are linear and decrease in magnitude with decreasing loop size N, signaling a reduction in Na+ released during the transition of these domains to the coil state. Values of SN decrease linearly with increasing N-1 in accordance with the expectation of a simple model for the occurrence of a gradient of long-range electrostatic forces at helix-coil boundaries, and extrapolate almost precisely to the value of S infinity observed for (dA.dT) infinity. These results indicate (1) less counterion is released per phosphate residue from the finite loop than from the infinite-sized loop, and (2) the difference in binding is constant for each boundary formed and independent of the size of the loop within the range examined: approximately 350 base pair (bp) greater than N greater than 71 bp. The slope of the dependence of SN on N-1 indicates the region of higher charge density at the boundary extends at least 18 A into the coil and probably 40-50 A before dropping to a value characteristic of the unperturbed coil. The free energy for excess counterion binding at boundaries can be expressed by -delta G/RT = 10.47 log[Na+] + 5.234 When the loop entropy function in a statistical mechanical algorithm for the dissociation of DNA is weighted by this quantity, calculated Tm are seen to vary by only +/- 0.09 degrees C from observed.


Assuntos
DNA , Fenômenos Químicos , Físico-Química , Eletricidade , Conformação de Ácido Nucleico , Concentração Osmolar , Cloreto de Sódio , Termodinâmica
7.
Adv Space Res ; 9(11): 97-103, 1989.
Artigo em Inglês | MEDLINE | ID: mdl-11537357

RESUMO

Microgravity research includes investigations designed to gain insight on methods of separating living cells. During a typical separation certain real-time measurements can be made by optical methods, but some materials must also be subjected to subsequent analyses, sometimes including cultivation of the separated cells. In the absence of on-orbit analytical or fraction collecting procedures, some means is required to "capture" cells after separation. The use of solutions that form gels was therefore investigated as a means of maintaining cells and/or macromolecules in the separated state after two types of simple ground-based experiments. Microgravity electrophoresis experiments were simulated by separating model cell types (rat, chicken, human and rabbit erythrocytes) in a vertical density gradient containing low-conductivity buffer, 1.7%-6.5% Ficoll, 6.8-5.0% sucrose, and 1% SeaPrep low-melting temperature agarose and demonstrating that, upon cooling, a gel formed in the column, and cells could be captured in the positions to which they had migrated. Two-phase extraction experiments were simulated by choosing two-polymer solutions in which phase separation occurs in normal saline at temperatures compatible with cell viability and in which one or both phases form a gel upon cooling. Suitable polymers included commercial agaroses (1-2%), maltodextrin (5-7%) and gelatin (5-20%).


Assuntos
Separação Celular/métodos , Eritrócitos/citologia , Géis , Simulação de Ausência de Peso , Animais , Galinhas , Meios de Cultura , Eletroforese/métodos , Gelatina , Humanos , Polissacarídeos , Coelhos , Ratos , Sefarose
9.
Biopolymers ; 26(12): 2009-26, 1987 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3435741
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...