Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 143(13): 134309, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26450316

RESUMO

The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b1, 6a1, 4b2, and 1a2 orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A1, B1, and B2 symmetries, which correspond to C-H stretching and H-C-H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

2.
J Am Chem Soc ; 124(25): 7563-72, 2002 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-12071767

RESUMO

The gas-phase internal elimination (E(i)) reaction of the sulfoxide (-SO-CH(3)) precursors of ethylene and model oligomers of PPV and PITN has been investigated by means of Hartree-Fock, Møller-Plesset (second and fourth order), and Density Functional Theory (B3LYP, MPW1K) calculations. Considerable differences between the obtained ground state and transition state geometries and the calculated activation energies are observed from one approach to the other, justifying first a careful calibration against the results of a benchmark CCSD(T) study of the E(i) reaction leading to ethylene. In comparison with the CCSD(T) results, as well as with available experimental data, DFT calculations along with the MPW1K functional are found to be a very appropriate choice for describing the E(i) pathway. The leading conformations of the precursors, the relevant transition state structures, and the energy barriers encountered along the lowest energy path to unsubstituted, alpha and beta chloro-, methoxy-, and cyano-substituted ethylene, styrene, stilbene in its cis and trans forms, and at last trans-biisothianaphthene have therefore been identified and characterized in detail employing DFT (MPW1K). Depending on the substituents attached to the C(alpha) and C(beta) atoms, different reaction mechanisms are observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...