Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374791

RESUMO

Considering pure quantum states, entanglement concentration is the procedure where, from N copies of a partially entangled state, a single state with higher entanglement can be obtained. Obtaining a maximally entangled state is possible for N=1. However, the associated success probability can be extremely low when increasing the system's dimensionality. In this work, we study two methods to achieve a probabilistic entanglement concentration for bipartite quantum systems with a large dimensionality for N=1, regarding a reasonably good probability of success at the expense of having a non-maximal entanglement. Firstly, we define an efficiency function Q considering a tradeoff between the amount of entanglement (quantified by the I-Concurrence) of the final state after the concentration procedure and its success probability, which leads to solving a quadratic optimization problem. We found an analytical solution, ensuring that an optimal scheme for entanglement concentration can always be found in terms of Q. Finally, a second method was explored, which is based on fixing the success probability and searching for the maximum amount of entanglement attainable. Both ways resemble the Procrustean method applied to a subset of the most significant Schmidt coefficients but obtaining non-maximally entangled states.

2.
Sci Rep ; 12(1): 17312, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243767

RESUMO

The problem of non-orthogonal state discrimination underlies crucial quantum information tasks, such as cryptography and computing protocols. Therefore, it is decisive to find optimal scenarios for discrimination among quantum states. We experimentally investigate the strategy for the optimal discrimination of two non-orthogonal states considering a fixed rate of inconclusive outcomes (FRIO). The main advantage of the FRIO strategy is to interpolate between unambiguous and minimum error discrimination by solely adjusting the rate of inconclusive outcomes. We present a versatile experimental scheme that performs the optimal FRIO measurement for any pair of generated non-orthogonal states with arbitrary a priori probabilities and any fixed rate of inconclusive outcomes. Considering different values of the free parameters in the FRIO protocol, we implement it upon qubit states encoded in the polarization mode of single photons generated in the spontaneous parametric down-conversion process. Moreover, we resort to a newfangled double-path Sagnac interferometer to perform a three-outcome non-projective measurement required for the discrimination task, showing excellent agreement with the theoretical prediction. This experiment provides a practical toolbox for a wide range of quantum state discrimination strategies using the FRIO scheme, which can significantly benefit quantum information applications and fundamental studies in quantum theory.

3.
J Chem Phys ; 156(12): 124110, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35364879

RESUMO

Nanoscale infrared (IR) resonators with sub-diffraction limited mode volumes and open geometries have emerged as new platforms for implementing cavity quantum electrodynamics at room temperature. The use of IR nanoantennas and tip nanoprobes to study strong light-matter coupling of molecular vibrations with the vacuum field can be exploited for IR quantum control with nanometer spatial and femtosecond temporal resolution. In order to advance the development of molecule-based quantum nanophotonics in the mid-IR, we propose a generally applicable semi-empirical methodology based on quantum optics to describe light-matter interaction in systems driven by mid-IR femtosecond laser pulses. The theory is shown to reproduce recent experiments on the acceleration of the vibrational relaxation rate in infrared nanostructures. It also provides physical insights on the implementation of coherent phase rotations of the near-field using broadband nanotips. We then apply the quantum framework to develop general tip-design rules for the experimental manipulation of vibrational strong coupling and Fano interference effects in open infrared resonators. We finally propose the possibility of transferring the natural anharmonicity of molecular vibrational levels to the resonator near-field in the weak coupling regime to implement intensity-dependent phase shifts of the coupled system response with strong pulses and develop a vibrational chirping model to understand the effect. The semi-empirical quantum theory is equivalent to first-principles techniques based on Maxwell's equations, but its lower computational cost suggests its use as a rapid design tool for the development of strongly coupled infrared nanophotonic hardware for applications ranging from quantum control of materials to quantum information processing.

4.
Entropy (Basel) ; 23(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418984

RESUMO

We studied the mutual information and quantum discord that Alice and Bob share when Bob implements a discrimination with a fixed rate of inconclusive outcomes (FRIO) onto two pure non-orthogonal quantum states, generated with arbitrary a priori probabilities. FRIO discrimination interpolates between minimum error (ME) and unambiguous state discrimination (UD). ME and UD are well known discrimination protocols with several applications in quantum information theory. FRIO discrimination provides a more general framework where the discrimination process together with its applications can be studied. In this setting, we compared the performance of optimum probability of discrimination, mutual information, and quantum discord. We found that the accessible information is obtained when Bob implements the ME strategy. The most (least) efficient discrimination scheme is ME (UD), from the point of view of correlations that are lost in the initial state and remain in the final state, after Bob's measurement.

5.
Sci Rep ; 10(1): 12781, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728142

RESUMO

Quantum tomography has become a key tool for the assessment of quantum states, processes, and devices. This drives the search for tomographic methods that achieve greater accuracy. In the case of mixed states of a single 2-dimensional quantum system adaptive methods have been recently introduced that achieve the theoretical accuracy limit deduced by Hayashi and Gill and Massar. However, accurate estimation of higher-dimensional quantum states remains poorly understood. This is mainly due to the existence of incompatible observables, which makes multiparameter estimation difficult. Here we present an adaptive tomographic method and show through numerical simulations that, after a few iterations, it is asymptotically approaching the fundamental Gill-Massar lower bound for the estimation accuracy of pure quantum states in high dimension. The method is based on a combination of stochastic optimization on the field of the complex numbers and statistical inference, exceeds the accuracy of any mixed-state tomographic method, and can be demonstrated with current experimental capabilities. The proposed method may lead to new developments in quantum metrology.

6.
Entropy (Basel) ; 21(3)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33266978

RESUMO

We study the classical and quantum correlations in the minimum error discrimination (ME) of two non-orthogonal pure quantum states. In particular, we consider quantum discord, thermal discord and entropy generation. We show that ME allows one to reach the accessible information between the two involved parties, Alice and Bob, in the discrimination process. We determine the amount of quantum discord that is consumed in the ME and show that the entropy generation is, in general, higher than the thermal discord. However, in certain cases the entropy generation is very close to thermal discord, which indicates that, in these cases, the process generates the least possible entropy. Moreover, we also study the ME process as a thermodynamic cycle and we show that it is in agreement with the second law of thermodynamics. Finally, we study the relation between the accessible information and the optimum success probability in ME.

7.
Sci Bull (Beijing) ; 62(5): 339-344, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36659418

RESUMO

We experimentally study the transport properties of dipolar and fundamental modes on one dimensional (1D) coupled waveguide arrays. By carefully modulating a wide optical beam, we are able to effectively excite dipolar or fundamental modes to study discrete diffraction (single-site excitation) and gaussian beam propagation (multi-site excitation plus a phase gradient). We observe that dipolar modes experience a larger spreading area due to an effective larger coupling constant, which is found to be more than two times larger than the one for fundamental modes. Additionally, we study the effect of non-diagonal disorder and find that while fundamental modes are already trapped on a weakly disorder array, dipoles are still able to propagate across the system.

8.
Phys Rev Lett ; 117(26): 260401, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28059533

RESUMO

Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far, the nonprojective character of a measurement can only be verified experimentally by already assuming a specific quantum model of parts of the experimental setup. Here, we overcome this restriction by using a device-independent approach. In an experiment on pairs of polarization-entangled photonic qubits we violate by more than 8 standard deviations a Bell-like correlation inequality that is valid for all sets of two-outcome measurements in any dimension. We combine this with a device-independent verification that the system is best described by two qubits, which therefore constitutes the first device-independent certification of a nonprojective quantum measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...