Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 32(8): 1754-1763.e6, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35276097

RESUMO

Conservation strategies are rarely systematically evaluated, which reduces transparency, hinders the cost-effective deployment of resources, and hides what works best in different contexts. Using data on the iconic and critically endangered orangutan (Pongo spp.), we developed a novel spatiotemporal framework for evaluating conservation investments. We show that around USD 1 billion was invested between 2000 and 2019 into orangutan conservation by governments, nongovernmental organizations, companies, and communities. Broken down by allocation to different conservation strategies, we find that habitat protection, patrolling, and public outreach had the greatest return on investment for maintaining orangutan populations. Given the variability in threats, land-use opportunity costs, and baseline remunerations in different regions, there were differential benefits per dollar invested across conservation activities and regions. We show that although challenging from a data and analysis perspective, it is possible to fully understand the relationships between conservation investments and outcomes and the external factors that influence these outcomes. Such analyses can provide improved guidance toward a more effective biodiversity conservation. Insights into the spatiotemporal interplays between the costs and benefits driving effectiveness can inform decisions about the most suitable orangutan conservation strategies for halting population declines. Although our study focuses on the three extant orangutan species of Sumatra and Borneo, our findings have broad application for evidence-based conservation science and practice worldwide.


Assuntos
Espécies em Perigo de Extinção , Pongo , Animais , Conservação dos Recursos Naturais , Indonésia , Pongo pygmaeus , Dinâmica Populacional
2.
Lab Chip ; 21(20): 3991-4004, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34474459

RESUMO

Infrared spectroscopy has found wide applications in the analysis of biological materials. A more recent development is the use of engineered nanostructures - plasmonic metasurfaces - as substrates for metasurface-enhanced infrared reflection spectroscopy (MEIRS). Here, we demonstrate that strong field enhancement from plasmonic metasurfaces enables the use of MEIRS as a highly informative analytic technique for real-time monitoring of cells. By exposing live cells cultured on a plasmonic metasurface to chemical compounds, we show that MEIRS can be used as a label-free phenotypic assay for detecting multiple cellular responses to external stimuli: changes in cell morphology, adhesion, and lipid composition of the cellular membrane, as well as intracellular signaling. Using a focal plane array detection system, we show that MEIRS also enables spectro-chemical imaging at the single-cell level. The described metasurface-based all-optical sensor opens the way to a scalable, high-throughput spectroscopic assay for live cells.


Assuntos
Nanoestruturas , Bioensaio , Espectrofotometria Infravermelho
3.
Lab Chip ; 20(12): 2136-2153, 2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32406430

RESUMO

Spectral cytopathology (SCP) is a promising label-free technique for diagnosing diseases and monitoring therapeutic outcomes using FTIR spectroscopy. In most cases, cells must be immobilized on a substrate prior to spectroscopic interrogation. This creates significant limitations for high throughput phenotypic whole-cell analysis, especially for the non-adherent cells. Here we demonstrate how metasurface-enhanced infrared reflection spectroscopy (MEIRS) can be applied to a continuous flow of live cell solution by applying AC voltage to metallic metasurfaces. By integrating metasurfaces with microfluidic delivery channels and attracting the cells to the metasurface via dielectrophoretic (DEP) force, we collect the infrared spectra of cells in real time within a minute, and correlate the spectra with simultaneously acquired images of the attracted cells. The resulting DEP-MEIRS technique paves the way for rapid SCP of complex cell-containing body fluids with low cell concentrations, and for the development of a wide range of label-free liquid biopsies.


Assuntos
Eletricidade , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
4.
JOR Spine ; 3(4): e1121, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33392456

RESUMO

Alterations to the biochemical composition of the intervertebral disc (IVD) are hallmarks of aging and degeneration. Methods to assess biochemical content, such as histology, immunohistochemistry, and spectrophotometric assays, are limited in their ability to quantitatively analyze the spatial distribution of biochemical components. Fourier transform infrared (FTIR) microscopy is a biochemical analysis method that can yield both quantitative and high-resolution data about the spatial distribution of biochemical components. This technique has been largely unexplored for use with the IVD, and existing methods use complex analytical techniques that make results difficult to interpret. The objective of the present study is to describe an FTIR microscopy method that has been optimized for imaging the collagen and proteoglycan content of the IVD. The method was performed on intact and discectomized IVDs from the sheep lumbar spine after 6 weeks in vivo in order to validate FTIR microscopy in healthy and degenerated IVDs. FTIR microscopy quantified collagen and proteoglycan content across the entire IVD and showed local changes in biochemical content after discectomy that were not observed with traditional histological methods. Changes in collagen and proteoglycans content were found to have strong correlations with Pfirrmann grades of degeneration. This study demonstrates how FTIR microscopy is a valuable research tool that can be used to quantitatively assess the local biochemical composition of IVDs in development, degeneration, and repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...