Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 32(10): 2546-2551, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34463497

RESUMO

The proportional content of the phenylpropanoid monomeric units (4-hydroxyphenyl (H), guaiacyl (G), and syringyl (S)) in lignin is of paramount importance in germ plasm screening and for evaluating the results of plant breeding and genetic engineering. This content is usually determined using a tedious and slow (2 days/sample) method involving derivatization followed by reductive cleavage (DFRC) combined with GC/MS or NMR analysis. We report here a fast mass spectrometric method for the determination of the monomer content. This method is based on the fast pyrolysis of a lignin sample inside the ion source area of a linear quadrupole ion trap mass spectrometer. The evaporated pyrolysis products are promptly deprotonated via negative-ion mode atmospheric pressure chemical ionization ((-)APCI) and analyzed by the mass spectrometer to determine the monomer content. The results obtained for the wild-type and six genetic variants of poplar were consistent with those obtained by the DFRC method. However, the mass spectrometry method requires only a small amount of sample (50 µg) and the use of only small amounts of three benign chemicals, methanol, water, and ammonium hydroxide, as opposed to DFRC that requires substantially larger amounts of sample (10 mg or more) and large amounts of several hazardous chemicals. Furthermore, the mass spectrometry method is substantially faster (3 min/sample), more precise, and the data interpretation is more straightforward as only nine ions measured by the mass spectrometer are considered.

2.
J Phys Chem A ; 123(42): 9149-9157, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31545607

RESUMO

A commercial fast pyrolysis probe coupled with a high-resolution tandem mass spectrometer was employed to identify the initial reactions and products of fast pyrolysis of xylobiose and xylotriose, model compounds of xylans. Fragmentation of the reducing end by loss of an ethenediol molecule via ring-opening and retro-aldol condensation was found to be the dominant pyrolysis pathway for xylobiose, and the structure of the product-ß-d-xylopyranosylglyceraldehyde-was identified by comparing collision-activated dissociation of the ionized product and an ionized authentic compound. This intermediate can undergo further decomposition via the loss of formaldehyde to form ß-d-xylopyranosylglycolaldehyde. In addition, the mechanisms of reactions leading to the loss of a water molecule or dissociation of the glycosidic linkages were explored computationally. These reactions are proposed to occur via pinacol ring contraction and/or Maccoll elimination mechanisms.

3.
Nat Commun ; 9(1): 5258, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30531995

RESUMO

Supported nanoparticles are broadly employed in industrial catalytic processes, where the active sites can be tuned by metal-support interactions (MSIs). Although it is well accepted that supports can modify the chemistry of metal nanoparticles, systematic utilization of MSIs for achieving desired catalytic performance is still challenging. The developments of supports with appropriate chemical properties and identification of the resulting active sites are the main barriers. Here, we develop two-dimensional transition metal carbides (MXenes) supported platinum as efficient catalysts for light alkane dehydrogenations. Ordered Pt3Ti and surface Pt3Nb intermetallic compound nanoparticles are formed via reactive metal-support interactions on Pt/Ti3C2Tx and Pt/Nb2CTx catalysts, respectively. MXene supports modulate the nature of the active sites, making them highly selective toward C-H activation. Such exploitation of the MSIs makes MXenes promising platforms with versatile chemical reactivity and tunability for facile design of supported intermetallic nanoparticles over a wide range of compositions and structures.

4.
J Am Chem Soc ; 140(44): 14870-14877, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30351929

RESUMO

Supported multimetallic nanoparticles (NPs) are widely used in industrial catalytic processes, where the relation between surface structure and function is well-known. However, the effect of subsurface layers on such catalysts remains mostly unstudied. Here, we demonstrate a clear subsurface effect on supported 2 nm core-shell NPs with atomically precise and high temperature stable Pt3Mn intermetallic surface measured by in situ synchrotron X-ray Diffraction, difference X-ray Absorption Spectroscopy, and Energy Dispersive X-ray Spectroscopy. The NPs with a Pt3Mn subsurface have 98% selectivity to C-H over C-C bond activation during propane dehydrogenation at 550 °C compared with 82% for core-shell NPs with a Pt subsurface. The difference is correlated with significant reduction in the heats of reactant adsorption due to the Pt3Mn intermetallic subsurface as discerned by theory as well as experiment. The findings of this work highlight the importance of subsurface for supported NP catalysts, which can be tuned via controlled intermetallic formation. Such approach is generally applicable to modifying multimetallic NPs, adding another dimension to the tunability of their catalytic performance.

5.
Science ; 357(6354): 898-903, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28818971

RESUMO

Copper ions exchanged into zeolites are active for the selective catalytic reduction (SCR) of nitrogen oxides (NO x ) with ammonia (NH3), but the low-temperature rate dependence on copper (Cu) volumetric density is inconsistent with reaction at single sites. We combine steady-state and transient kinetic measurements, x-ray absorption spectroscopy, and first-principles calculations to demonstrate that under reaction conditions, mobilized Cu ions can travel through zeolite windows and form transient ion pairs that participate in an oxygen (O2)-mediated CuI→CuII redox step integral to SCR. Electrostatic tethering to framework aluminum centers limits the volume that each ion can explore and thus its capacity to form an ion pair. The dynamic, reversible formation of multinuclear sites from mobilized single atoms represents a distinct phenomenon that falls outside the conventional boundaries of a heterogeneous or homogeneous catalyst.

6.
J Am Chem Soc ; 138(18): 6028-48, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27070199

RESUMO

The relationships among the macroscopic compositional parameters of a Cu-exchanged SSZ-13 zeolite catalyst, the types and numbers of Cu active sites, and activity for the selective catalytic reduction (SCR) of NOx with NH3 are established through experimental interrogation and computational analysis of materials across the catalyst composition space. Density functional theory, stochastic models, and experimental characterizations demonstrate that within the synthesis protocols applied here and across Si:Al ratios, the volumetric density of six-membered-rings (6MR) containing two Al (2Al sites) is consistent with a random Al siting in the SSZ-13 lattice subject to Löwenstein's rule. Further, exchanged Cu(II) ions first populate these 2Al sites before populating remaining unpaired, or 1Al, sites as Cu(II)OH. These sites are distinguished and enumerated ex situ through vibrational and X-ray absorption spectroscopies (XAS) and chemical titrations. In situ and operando XAS follow Cu oxidation state and coordination environment as a function of environmental conditions including low-temperature (473 K) SCR catalysis and are rationalized through first-principles thermodynamics and ab initio molecular dynamics. Experiment and theory together reveal that the Cu sites respond sensitively to exposure conditions, and in particular that Cu species are solvated and mobilized by NH3 under SCR conditions. While Cu sites are spectroscopically and chemically distinct away from these conditions, they exhibit similar turnover rates, apparent activation energies and apparent reaction orders at the SCR conditions, even on zeolite frameworks other than SSZ13.


Assuntos
Cobre/química , Zeolitas/química , Amônia/química , Catálise , Cátions , Hidróxidos/química , Oxirredução , Termodinâmica
7.
Artigo em Inglês | MEDLINE | ID: mdl-26307712

RESUMO

A fast pyrolysis probe/linear quadrupole ion trap mass spectrometer combination was used to study the primary fast pyrolysis products (those that first leave the hot pyrolysis surface) of cellulose, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, as well as of cellobiosan, cellotriosan, and cellopentosan, at 600°C. Similar products with different branching ratios were found for the oligosaccharides and cellulose, as reported previously. However, identical products (with the exception of two) with similar branching ratios were measured for cellotriosan (and cellopentosan) and cellulose. This result demonstrates that cellotriosan is an excellent small-molecule surrogate for studies of the fast pyrolysis of cellulose and also that most fast pyrolysis products of cellulose do not originate from the reducing end. Based on several observations, the fast pyrolysis of cellulose is suggested to initiate predominantly via two competing processes: the formation of anhydro-oligosaccharides, such as cellobiosan, cellotriosan, and cellopentosan (major route), and the elimination of glycolaldehyde (or isomeric) units from the reducing end of oligosaccharides formed from cellulose during fast pyrolysis.


Assuntos
Aldeídos/química , Celulose/análise , Celulose/química , Calefação/métodos , Oligossacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Aldeídos/análise , Biocombustíveis/análise , Oligossacarídeos/análise
8.
ACS Appl Mater Interfaces ; 7(30): 16428-39, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26158796

RESUMO

Atomic layer deposition (ALD) of alumina using trimethylaluminum (TMA) has technological importance in microelectronics. This process has demonstrated a high potential in applications of protective coatings on Cu surfaces for control of diffusion of Cu in Cu2S films in photovoltaic devices and sintering of Cu-based nanoparticles in liquid phase hydrogenation reactions. With this motivation in mind, the reaction between TMA and oxygen was investigated on Cu(111) and Cu2O/Cu(111) surfaces. TMA did not adsorb on the Cu(111) surface, a result consistent with density functional theory (DFT) calculations predicting that TMA adsorption and decomposition are thermodynamically unfavorable on pure Cu(111). On the other hand, TMA readily adsorbed on the Cu2O/Cu(111) surface at 473 K resulting in the reduction of some surface Cu(1+) to metallic copper (Cu(0)) and the formation of a copper aluminate, most likely CuAlO2. The reaction is limited by the amount of surface oxygen. After the first TMA half-cycle on Cu2O/Cu(111), two-dimensional (2D) islands of the aluminate were observed on the surface by scanning tunneling microscopy (STM). According to DFT calculations, TMA decomposed completely on Cu2O/Cu(111). High-resolution electron energy loss spectroscopy (HREELS) was used to distinguish between tetrahedrally (Altet) and octahedrally (Aloct) coordinated Al(3+) in surface adlayers. TMA dosing produced an aluminum oxide film, which contained more octahedrally coordinated Al(3+) (Altet/Aloct HREELS peak area ratio ≈ 0.3) than did dosing O2 (Altet/Aloct HREELS peak area ratio ≈ 0.5). After the first ALD cycle, TMA reacted with both Cu2O and aluminum oxide surfaces in the absence of hydroxyl groups until film closure by the fourth ALD cycle. Then, TMA continued to react with surface Al-O, forming stoichiometric Al2O3. O2 half-cycles at 623 K were more effective for carbon removal than O2 half-cycles at 473 K or water half-cycles at 623 K. The growth rate was approximately 3-4 Å/cycle for TMA+O2 ALD (O2 half-cycles at 623 K). No preferential growth of Al2O3 on the steps of Cu(111) was observed. According to STM, Al2O3 grows homogeneously on Cu(111) terraces.

9.
J Org Chem ; 80(3): 1909-14, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25562626

RESUMO

A fast-pyrolysis probe/tandem mass spectrometer combination was utilized to determine the initial fast-pyrolysis products for four different selectively (13)C-labeled cellobiose molecules. Several products are shown to result entirely from fragmentation of the reducing end of cellobiose, leaving the nonreducing end intact in these products. These findings are in disagreement with mechanisms proposed previously. Quantum chemical calculations were used to identify feasible low-energy pathways for several products. These results provide insights into the mechanisms of fast pyrolysis of cellulose.


Assuntos
Carboidratos/química , Isótopos de Carbono/química , Celobiose/química , Celulose/química , Hexoses/química , Temperatura Alta , Teoria Quântica , Espectrometria de Massas em Tandem
10.
Angew Chem Int Ed Engl ; 53(44): 11828-33, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25220217

RESUMO

Operando X-ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu-exchanged SSZ-13. Catalysts prepared to contain only isolated, exchanged Cu(II) ions evidence both Cu(II) and Cu(I) ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for Cu(II) reduction to Cu(I). DFT calculations show that NO-assisted NH3 dissociation is both energetically favorable and accounts for the observed Cu(II) reduction. The calculations predict in situ generation of Brønsted sites proximal to Cu(I) upon reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of Cu(I) to Cu(II), which DFT suggests to occur by a NO2 intermediate. Reaction of Cu-bound NO2 with proximal NH4(+) completes the catalytic cycle. N2 is produced in both reduction and oxidation half-cycles.

11.
ACS Appl Mater Interfaces ; 6(16): 14702-11, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25093626

RESUMO

Palladium nanoparticles were synthesized by thermal decomposition of palladium(II) hexafluoroacetylacetonate (Pd(hfac)2), an atomic layer deposition (ALD) precursor, on a TiO2(110) surface. According to X-ray photoelectron spectroscopy (XPS), Pd(hfac)2 adsorbs on TiO2(110) dissociatively yielding Pd(hfac)(ads), hfac(ads), and adsorbed fragments of the hfac ligand at 300 K. A (2 × 1) surface overlayer was observed by scanning tunneling microscopy (STM), indicating that hfac adsorbs in a bidentate bridging fashion across two Ti 5-fold atoms and Pd(hfac) adsorbs between two bridging oxygen atoms on the surface. Annealing of the Pd(hfac)(ads) and hfac(ads) species at 525 K decomposed the adsorbed hfac ligands, leaving PdO-like species and/or Pd atoms or clusters. Above 575 K, the XPS Pd 3d peaks shift toward lower binding energies and Pd nanoparticles are observed by STM. These observations point to the sintering of Pd atoms and clusters to Pd nanoparticles. The average height of the Pd nanoparticles was 1.2 ± 0.6 nm at 575 K and increased to 1.7 ± 0.5 nm following annealing at 875 K. The Pd coverage was estimated from XPS and STM data to be 0.05 and 0.03 monolayers (ML), respectively, after the first adsorption/decomposition cycle. The amount of palladium deposited on the TiO2(110) surface increased linearly with the number of adsorption/decomposition cycles with a growth rate of 0.05 ML or 0.6 Å per cycle. We suggest that the removal of the hfac ligand and fragments eliminates the nucleation inhibition of Pd nanoparticles previously observed for the Pd(hfac)2 precursor on TiO2.

12.
Anal Chem ; 85(22): 10927-34, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24098979

RESUMO

Mass spectrometric methodology was developed for the determination and manipulation of the primary products of fast pyrolysis of carbohydrates. To determine the true primary pyrolysis products, a very fast heating pyroprobe was coupled to a linear quadrupole ion trap mass spectrometer through a custom-built adaptor. A home-built flow tube that simulates pyrolysis reactor conditions was used to examine the secondary reactions of the primary products. Depending on the experiment, the pyrolysis products were either evaporated and quenched or allowed to react for a period of time. The quenched products were ionized in an atmospheric pressure chemical ionization (APCI) source infused with one of two ionization reagents, chloroform or ammonium hydroxide, to aid in ionization. During APCI in negative ion mode, chloroform produces chloride anions that are known to readily add to carbohydrates with little bias and little to no fragmentation. On the other hand, in positive ion mode APCI, ammonium hydroxide forms ammonium adducts with carbohydrates with little to no fragmentation. The latter method ionizes compounds that are not readily ionized upon negative ion mode APCI, such as furan derivatives. Six model compounds were studied to verify the ability of the ionization methods to ionize known pyrolysis products: glycolaldehyde, hydroxyacetone, furfural, 5-hydroxymethylfurfural, levoglucosan, and cellobiosan. The method was then used to examine fast pyrolysis of cellobiose. The primary fast pyrolysis products were determined to consist of only a handful of compounds that quickly polymerize to form anhydro-oligosaccharides when allowed to react at high temperatures for an extended period of time.

13.
J Am Chem Soc ; 135(16): 6280-8, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23517426

RESUMO

The kinetics of 1-hexene polymerization using a family of five zirconium amine bis-phenolate catalysts, Zr[tBu-ON(X)O]Bn2 (where X = THF (1), pyridine (2), NMe2 (3), furan (4), and SMe (5)), has been investigated to uncover the mechanistic effect of varying the pendant ligand X. A model-based approach using a diverse set of data including monomer consumption, evolution of molecular weight, and end-group analysis was employed to determine each of the reaction specific rate constants involved in a given polymerization process. The mechanism of polymerization for 1-5 was similar and the necessary elementary reaction steps included initiation, normal propagation, misinsertion, recovery from misinsertion, and chain transfer. The latter reaction, chain transfer, featured monomer independent ß-H elimination in 1-3 and monomer dependent ß-H transfer in 4 and 5. Of all the rate constants, those for chain transfer showed the most variation, spanning 2 orders of magnitude (ca. (0.1-10) × 10(-3) s(-1) for vinylidene and (0.5-87) × 10(-4) s(-1) for vinylene). A quantitative structure-activity relationship was uncovered between the logarithm of the chain transfer rate constants and the Zr-X bond distance for catalysts 1-3. However, this trend is broken once the Zr-X bond distance elongates further, as is the case for catalysts 4 and 5, which operate primarily through a different mechanistic pathway. These findings underscore the importance of comprehensive kinetic modeling using a diverse set of multiresponse data, enabling the determination of robust kinetic constants and reaction mechanisms of catalytic olefin polymerization as part of the development of structure-activity relationships.

14.
J Am Chem Soc ; 134(10): 4700-8, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22316316

RESUMO

The water-gas shift (WGS) reaction rate per total mole of Au under 7% CO, 8.5% CO(2), 22% H(2)O, and 37% H(2) at 1 atm for Au/Al(2)O(3) catalysts at 180 °C and Au/TiO(2) catalysts at 120 °C varies with the number average Au particle size (d) as d(-2.2±0.2) and d(-2.7±0.1), respectively. The use of nonporous and crystalline, model Al(2)O(3) and TiO(2) supports allowed the imaging of the active catalyst and enabled a precise determination of the Au particle size distribution and particle shape using transmission electron microscopy (TEM). Further, the apparent reaction orders and the stretching frequency of CO adsorbed on Au(0) (near 2100 cm(-1)) determined by diffuse reflectance infrared spectroscopy (DRIFTS) depend on d. Because of the changes in reaction rates, kinetics, and the CO stretching frequency with number average Au particle size, it is determined that the dominant active sites are the low coordinated corner Au sites, which are 3 and 7 times more active than the perimeter Au sites for Au/Al(2)O(3) and Au/TiO(2) catalysts, respectively, and 10 times more active for Au on TiO(2) versus Al(2)O(3). From operando Fourier transform infrared spectroscopy (FTIR) experiments, it is determined that the active Au sites are metallic in nature. In addition, Au/Al(2)O(3) catalysts have a higher apparent H(2)O order (0.63) and lower apparent activation energy (9 kJ mol(-1)) than Au/TiO(2) catalysts with apparent H(2)O order of -0.42 to -0.21 and activation energy of 45-60 kJ mol(-1) at near 120 °C. From these data, we conclude that the support directly participates by activating H(2)O molecules.

15.
J Am Chem Soc ; 132(40): 14018-20, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20853899

RESUMO

Au/TiO(2) catalysts used in the water-gas shift (WGS) reaction at 120 °C, 7% CO, 22% H(2)O, 9% CO(2), and 37% H(2) had rates up to 0.1 moles of CO converted per mole of Au per second. However, the rate per mole of Au depends strongly on the Au particle size. The use of a nonporous, model support allowed for imaging of the active catalyst and a precise determination of the gold size distribution using transmission electron microscopy (TEM) because all the gold is exposed on the surface. A physical model of Au/TiO(2) is used to show that corner atoms with fewer than seven neighboring gold atoms are the dominant active sites. The number of corner sites does not vary as particle size increases above 1 nm, giving the surprising result that the rate per gold cluster is independent of size.

16.
Langmuir ; 26(21): 16578-88, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20666498

RESUMO

The kinetics of the oxidation of NO by O(2) was studied on 1 cm diameter single crystals, Pt(111) and Pt(321), at atmospheric pressure. The surface of the (321) crystal is composed of 20% kink, 20% step, and 60% terrace atoms and simulates small 1-3 nm size Pt particles on supported catalysts, while the (111) surface simulates the most stable plane found on large, >5 nm, particles. The turnover rates (TORs), that is, rate normalized by the exposed platinum, on the two single crystals differ by less than a factor of 2 over the range of conditions studied and are also similar to the TOR on a supported catalyst with an average particle size of 9 nm. Both surfaces show a dynamic kinetic behavior as evidenced by a change in the apparent activation energy and reaction orders as a function of reaction conditions. The oxygen coverage after initial rate experiments on Pt(111) was 0.6 monolayer (ML) on average which is similar to that measured previously by in situ X-ray photoelectron spectroscopy (XPS) under similar conditions. This oxygen overlayer, which is likely controlled by the relative presence of NO and NO(2), inhibits O(2) dissociation but lowers the binding energy of reactants enough to allow the catalysis. Long-term stability studies on Pt(111) correlate catalyst deactivation with irreversibly bound oxygen on the surface at coverages over 1 ML, as measured after reaction. Ex situ Auger electron spectroscopy (AES) and XPS results suggest that the surface defect sites on Pt(321) begin to oxidize relative to atoms on the (111) plane at lower NO(2) to NO ratios.


Assuntos
Óxido Nítrico/química , Oxigênio/química , Platina/química , Cristalização , Cinética , Dióxido de Nitrogênio/síntese química , Dióxido de Nitrogênio/química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
17.
Environ Sci Technol ; 44(13): 5298-305, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20527758

RESUMO

We have estimated sun-to-fuel yields for the cases when dedicated fuel crops are grown and harvested to produce liquid fuel. The stand-alone biomass to liquid fuel processes, that use biomass as the main source of energy, are estimated to produce one-and-one-half to three times less sun-to-fuel yield than the augmented processes. In an augmented process, solar energy from a fraction of the available land area is used to produce other forms of energy such as H(2), heat etc., which are then used to increase biomass carbon recovery in the conversion process. However, even at the highest biomass growth rate of 6.25 kg/m(2).y considered in this study, the much improved augmented processes are estimated to have sun-to-fuel yield of about 2%. We also propose a novel stand-alone H(2)Bioil-B process, where a portion of the biomass is gasified to provide H(2) for the fast-hydropyrolysis/hydrodeoxygenation of the remaining biomass. This process is estimated to be able to produce 125-146 ethanol gallon equivalents (ege)/ton of biomass of high energy density oil but needs experimental development. The augmented version of fast-hydropyrolysis/hydrodeoxygenation, where H(2) is generated from a nonbiomass energy source, is estimated to provide liquid fuel yields as high as 215 ege/ton of biomass. These estimated yields provide reasonable targets for the development of efficient biomass conversion processes to provide liquid fuel for a sustainable transport sector.


Assuntos
Agricultura/métodos , Biomassa , Fontes Geradoras de Energia , Algoritmos , Fontes de Energia Bioelétrica , Conservação dos Recursos Naturais , Produtos Agrícolas/metabolismo , Hidrogênio/química , Modelos Teóricos , Energia Solar , Luz Solar , Madeira
18.
Phys Chem Chem Phys ; 12(21): 5678-93, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20442915

RESUMO

The turn-over-rate (TOR) for the water gas shift (WGS) reaction at 200 degrees C, 7% CO, 9% CO(2), 22% H(2)O, 37% H(2) and balance Ar, of 1.4 nm Au/Al(2)O(3) is approximately 20 times higher than that of 1.6 nm Pt/Al(2)O(3). Operando EXAFS experiments at both the Au and Pt L(3) edges reveal that under reaction conditions, the catalysts are fully metallic. In the absence of adsorbates, the metal-metal bond distances of Pt and Au catalysts are 0.07 A and 0.13 A smaller than those of bulk Pt and Au foils, respectively. Adsorption of H(2) or CO on the Pt catalysts leads to significantly longer Pt-Pt bond distances; while there is little change in Au-Au bond distance with adsorbates. Adsorption of CO, H(2) and H(2)O leads to changes in the XANES spectra that can be used to determine the surface coverage of each adsorbate under reaction conditions. During WGS, the coverage of CO, H(2)O, and H(2) are obtained by the linear combination fitting of the difference XANES, or DeltaXANES, spectra. Pt catalysts adsorb CO, H(2), and H(2)O more strongly than the Au, in agreement with the lower CO reaction order and higher reaction temperatures.

19.
J Am Chem Soc ; 132(2): 558-66, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20030387

RESUMO

Thorough kinetic characterization of single-site olefin polymerization catalysis requires comprehensive, quantitative kinetic modeling of a rich multiresponse data set that includes monomer consumption, molecular weight distributions (MWDs), end group analysis, etc. at various conditions. Herein we report the results obtained via a comprehensive, quantitative kinetic modeling of all chemical species in the batch polymerization of 1-hexene by rac-C(2)H(4)(1-Ind)(2)ZrMe(2) activated with B(C(6)F(5))(3). While extensive studies have been published on this catalyst system, the previously acknowledged kinetic mechanism is unable to predict the MWD. We now show it is possible to predict the entire multiresponse data set (including the MWDs) using a kinetic model featuring a catalytic event that renders 43% of the catalyst inactive for the duration of the polymerization. This finding has significant implications regarding the behavior of the catalyst and the polymer produced and is potentially relevant to other single-site polymerization catalysts, where it would have been undetected as a result of incomplete kinetic modeling. In addition, comprehensive kinetic modeling of multiresponse data yields robust values of rate constants (uncertainties of less than 16% for this catalyst) for future use in developing predictive structure-activity relationships.

20.
Proc Natl Acad Sci U S A ; 104(12): 4828-33, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17360377

RESUMO

A hybrid hydrogen-carbon (H(2)CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H(2) and CO(2) recycled from the H(2)-CO to liquid conversion reactor. Modeling of this biomass to liquids process has identified several major advantages of the H(2)CAR process. (i) The land area needed to grow the biomass is <40% of that needed by other routes that solely use biomass to support the entire transportation sector. (ii) Whereas the literature estimates known processes to be able to produce approximately 30% of the United States transportation fuel from the annual biomass of 1.366 billion tons, the H(2)CAR process shows the potential to supply the entire United States transportation sector from that quantity of biomass. (iii) The synthesized liquid provides H(2) storage in an open loop system. (iv) Reduction to practice of the H(2)CAR route has the potential to provide the transportation sector for the foreseeable future, using the existing infrastructure. The rationale of using H(2) in the H(2)CAR process is explained by the significantly higher annualized average solar energy conversion efficiency for hydrogen generation versus that for biomass growth. For coal to liquids, the advantage of H(2)CAR is that there is no additional CO(2) release to the atmosphere due to the replacement of petroleum with coal, thus eliminating the need to sequester CO(2).


Assuntos
Conservação dos Recursos Naturais/métodos , Combustíveis Fósseis , Meios de Transporte , Biomassa , Carbono , Óleos Combustíveis , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...