Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Scand J Med Sci Sports ; 34(1): e14515, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837209

RESUMO

BACKGROUND: Alpine skiing involves the conversion of potential energy into kinetic energy, with the "velocity barrier" (VB) at each moment corresponding to the maximal velocity at which the athlete can ski while staying within the boundaries of the gates and maintaining control. Nevertheless, this concept has never been proven by evidence. The aim of this study was to experimentally test the existence of the VB and clarify its relationship with skier's force production/application capacities. METHODS: Fourteen skiers were equipped with ski-mounted force plates and a positional device and ran a 2-turn Giant Slalom section starting from eight different heights on the slope. Three conditions were selected for further analysis: minimal entrance velocity (vmin ); entrance velocity allowing the better section time (VB); maximal entrance velocity (vmax ). Entrance velocity, section time, mean force output, ratio of force application effectiveness, velocity normalized energy dissipation, and path length were compared between the three conditions. Moreover, skier's mechanical energy and velocity curves were compared all along the section between the three conditions using SPM analysis. RESULTS: The section time was reduced in VB compared to vmin (p < 0.001) and vmax (p = 0.002). Skiers presented an incapacity to increase force output beyond the VB (p = 0.441) associated with a lower force application effectiveness (p = 0.005). Maximal entrance velocity was associated to higher energy dissipation (p < 0.001) and path length (p = 0.005). CONCLUSION: The present study experimentally supports the existence of the VB. The force production/application capacities seem to limit the skiing effectiveness beyond the VB, associated to increased energy dissipations and path length.


Assuntos
Esqui , Humanos , Fenômenos Biomecânicos , Atletas
2.
PLoS One ; 16(1): e0244698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444398

RESUMO

Alpine ski racers require diverse physical capabilities. While enhanced force production is considered key to high-level skiing, its relevance is convoluted. The aims of this study were to i) clarify the association between performance path length and velocity, ii) test the importance of radial force, and iii) explore the contribution of force magnitude and orientation to turn performance. Ski athletes (N = 15) were equipped with ski-mounted force plates and a global navigation satellite system to compute the following variables over 14 turns: path length (L), velocity normalized energy dissipation [Δemech/vin], radial force [Fr], total force (both limbs [Ftot], the outside limb, and the difference between limbs), and a ratio of force application (RF = Fr/Ftot). Data were course-averaged or separated into sectional turn groupings, averaged, and entered into stepped correlation and regression models. Our results support Δemech/vin as a discriminative performance factor (R2 = 0.50-0.74, p < .003), except in flat sections. Lower course times and better Δemech/vin were associated with greater Fr (R2 = 0.34-0.69 and 0.31-0.52, respectively, p < .032), which was related to both Ftot and RF (ß = 0.92-1.00 and 0.63-0.81, respectively, p < .001) which varied in predictive order throughout the sections. Ftot was associated with increased outside limb force and a more balanced contribution of each limb (ß = 1.04-1.18 and -0.65- -0.92, respectively, p < .001). Fr can be improved by either increasing total force output or by increasing technical effectiveness (i.e., proportionally more force radially) which should increase the trajectories available to the skier on the ski course.


Assuntos
Desempenho Atlético , Esqui , Aceleração , Adulto , Atletas , Fenômenos Biomecânicos , Humanos , Adulto Jovem
3.
Front Sports Act Living ; 2: 589257, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33345162

RESUMO

In alpine ski racing, different line choices can drastically affect turn or sectional performance. The straight-line transition between two turns is the main phase where skiers can gain speed in a race, open their trajectory, or reduce their path length. Between two turns, a skier can foster speed increase by spending more time in a straight line, inducing sharper turning phases (Z strategy). Inversely, speed can be conserved during the entire turn cycle by performing long curved turns separated by a short straight line (S strategy). This research aimed to evaluate the kinetic and kinematic specificities associated with the line strategy and to explore interactions of selected strategy with skier performance and energy dissipation. A mixed-level population of male alpine skiers (n = 17) skied a timed giant-slalom course while equipped with specialized force plates and a positional device collecting synchronized normal ground reaction force and position-time data, respectively. Time of edge switch was computed from the force signal as the period with the lowest force application on the outside ski. From positional data, turn cycles were separated into turning and straight-line phases (radius bellow and above 30 m, respectively). Time length, path length in the straight line, speed amplitude, and change in specific mechanical energy were computed for each turn and averaged for each skier. The path length during straight line was used to continuously characterize the line strategy within the spectrum between the Z (long straight line) and S (short straight line) strategy. Path length in the straight line was correlated with the amplitude of speed over a straight line (r = 0.672, p = 0.003) and relative and absolute time spent in the straight line (r = 0.967, p < 0.001). However, path length in straight line was not correlated with decrease of speed in the following turn (r = -0.418, p = 0.390) or time without force application on the outside ski (r = 0.195, p = 0.453). While higher-performing athletes on the course performed turns during which they dissipated less energy when normalized to entry speed (r = -0.620, p = 0.008), it appears they did so with variable turn strategies approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...