Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 7(12): 14146-14153, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38962509

RESUMO

We present CdSe@CdS nanorods coated with a redox-active polydopamine (PDA) layer functionalized with cobaloxime-derived photocatalysts for efficient solar-driven hydrogen evolution in aqueous environments. The PDA-coating provides reactive groups for the functionalization of the nanorods with different molecular catalysts, facilitates charge separation and transfer of electrons from the excited photosensitizer to the catalyst, and reduces photo-oxidation of the photosensitizer. X-ray photoelectron spectroscopy (XPS) confirms the successful functionalization of the nanorods with cobalt-based catalysts, whereas the catalyst loading per nanorod is quantified by total reflection X-ray fluorescence spectrometry (TXRF). A systematic comparison of different types of cobalt-based catalysts was carried out, and their respective performance was analyzed in terms of the number of nanorods and the amount of catalyst in each sample [turnover number, (TON)]. This study shows that the performance of these multicomponent photocatalysts depends strongly on the catalyst loading and less on the specific structure of the molecular catalyst. Lower catalyst loading is advantageous for increasing the TON because the catalysts compete for a limited number of charge carriers at the nanoparticle surface. Therefore, increasing the catalyst loading relative to the absolute amount of hydrogen produced does not lead to a steady increase in the photocatalytic activity. In our work, we provide insights into how the performance of a multicomponent photocatalytic system is determined by the intricate interplay of its components. We identify the stable attachment of the catalyst and the ratio between the catalyst and photosensitizer as critical parameters that must be fine-tuned for optimal performance.

2.
J Am Chem Soc ; 146(8): 5186-5194, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38311922

RESUMO

Isomer-pure functionalized fullerenes are required to boost the development of fullerene chemistry in any field, but their multiple functionalization renders a mixture of regioisomers that are very difficult to purify by chromatography. For the specific case of C70, its nonspherical geometry makes its regioselective functionalization more challenging than that of spherical C60. In this work, the supramolecular mask approach is applied for the first time to C70, which is encapsulated in two different nanocapsules to achieve the Bingel bis-cyclopropanation at α-bonds of opposite poles. Based on the tetragonal prismatic geometry imposed by the smaller supramolecular mask tested, the obtained major bis-adduct is completely reversed (major 5 o'clock) compared to bare C70 functionalization (major 2 o'clock). Moreover, by further restricting the accessibility of C70 using a three-shell Matryoshka mask and dibenzyl-bromomalonate, a single regiospecific 2 o'clock bis-isomer is obtained, owing to the perfect complementarity of the mask and the addend steric properties. The outcome of the reactions is fully explained at the molecular level by means of a thorough molecular dynamics (MD) study of the accessibility of the α-bonds to produce the different bis-adducts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...