Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 171716, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513847

RESUMO

The construction and maintenance of road pavements entail detrimental impacts on the consumption of resources and damage to the natural environment but also make up an opportunity for the large-scale application of circular economy principles and innovative waste valorisation paths. The present study focuses on developing a comprehensive procedure to evaluate the technical and environmental sustainability of replacing high percentage of limestone aggregates with artificial aggregates from municipal solid waste incineration (MSWI) into hot or cold recycled asphalt mixtures for asphalt pavements. The technical feasibility of the designed mixtures was investigated in terms of the main physical and mechanical properties of both the raw materials and the asphalt mixtures with content of artificial aggregates or sand in the range 25-40 % by mass. The environmental feasibility of the asphalt mixtures was evaluated through the SEM-EDS technique, the analysis of the eluate of the leaching test and the ecotoxicity for living organisms. Afterwards, the life cycle assessment (LCA) was applied to detect the critical spots of the life cycle of 1 m2 of a 6 cm-thick binder layer with high percentage of artificial aggregates or sand built and maintained through 30 years analysis period according to 18 impact category indicators. The main results show that, recycling the artificial aggregates into hot asphalt mixtures has on average a negligible effect on the overall environmental performance of the life cycle, and appears to be detrimental only for the consumption of fossil resources due to the higher optimum bitumen content. Looking at the results for cold mixes, the introduction of the artificial aggregates has an effect on the predicted durability of the asphalt layers, which is maximized in the case of coarse artificial aggregates. Consequent environmental benefits regard the global warming potential, fossil resource scarcity and freshwater eutrophication indicators.

2.
Materials (Basel) ; 14(14)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34300786

RESUMO

The pursuit of sustainability in the field of road asphalt pavements calls for effective decision-making strategies, referring to both the technical and environmental sustainability of the solutions. This study aims to compare the life cycle impacts of several pavement solution alternatives involving, in the binder and base layers, some eco-designed, hot- and cold-produced asphalt mixtures made up of recycled aggregates in substitution for natural filler and commercial recycled polymer pellets for dry mixture modification. The first step focused on the technical and environmental compatibility assessment of the construction and demolition waste (CDW), jet grouting waste (JGW), fly ash (FA), and reclaimed asphalt pavement (RAP). Then, three non-traditional mixtures were designed for the binder layer and three for the base layer and characterized in terms of the stiffness modulus. Asphalt pavement design allowed for the definition of the functional units of Life Cycle Assessment (LCA), which was applied to all of the pavement configurations under analysis in a "from cradle to grave" approach. The LCA results showed that the best performance was reached for the solutions involving a cold, in-place recycled mixture made up of RAP and JGW in the base layer, which lowered all the impact category indicators by 31% on average compared to those of the traditional pavement solution. Further considerations highlighted that the combination of a cold base layer with a hot asphalt mixture made up of CDW or FA in the binder layer also maximized the service life of the pavement solution, providing the best synergistic effect.

3.
Accid Anal Prev ; 93: 75-91, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27177393

RESUMO

The objective of this paper is to explore the effect of the road features of two-lane rural road networks on crash severity. One of the main goals is to calibrate Safety Performance Functions (SPFs) that can predict the frequency per year of injuries and fatalities on homogeneous road segments. It was found that on more than 2000km of study-road network that annual average daily traffic, lane width, curvature change rate, length, and vertical grade are important variables in explaining the severity of crashes. A crash database covering a 5-year period was examined to achieve the goals (1295 injurious crashes that included 2089 injuries and 235 fatalities). A total of 1000km were used to calibrate SPFs and the remaining 1000km reflecting the traffic, geometric, functional features of the preceding one were used to validate their effectiveness. A negative binomial regression model was used. Reflecting the crash configurations of the dataset and maximizing the validation outcomes, four main sets of SPFs were developed as follows: (a) one equation to predict only injury frequency per year for the subset where only non-fatal injuries occurred, (b) two different equations to predict injury frequency and fatality frequency per year per sub-set where at least one fa tality occurred together with one injury, and (c) only one equation to predict the total frequency per year of total casualties correlating accurate percentages to obtain the final expected frequency of injuries and fatalities per year on homogeneous road segments. Residual analysis confirms the effectiveness of the SPFs.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Planejamento Ambiental , Mortalidade , População Rural/estatística & dados numéricos , Segurança/estatística & dados numéricos , Ferimentos e Lesões , Humanos , Itália , Modelos Estatísticos
4.
Traffic Inj Prev ; 15(1): 25-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24279963

RESUMO

OBJECTIVE: The objective of this research is to develop safety performance functions (SPFs) on 2-lane rural roads to predict the number of injury crashes per year per 10(8) vehicles/km on the road segment using a study on the influence of the human factors (gender, age, number of drivers) and road scenario (combination of infrastructure and environmental conditions found at the site at the time of the crash) on the effects of a crash by varying the dynamic. Countermeasures are suggested to reduce the injury crash rate and include different awareness campaigns and structural measures on the segments of road. METHODS: An 8-year period was analyzed for which 5 years of crash information were used to calibrate and specify SPFs and the remaining 3 years were used to check the reliability of the equations. Before moving to the calibration phase, a technique to filter anomalous injury crash rates was adopted by using a method widely used in geotechnical engineering that is based on estimates of ranges of values that can be considered fluctuations of the "regular" measures compared to values estimated as "abnormal" for each homogeneous scenario. Due to overdispersion of crash data, generalized estimating equations and additional log linkage equation were adopted to calibrate SPFs. The Akaike information criterion and Bayesian information criterion were used to check the reliability of the models. RESULTS: Six SPFs were calibrated: for head-on/side collisions, one equation was built for circular curves and one for tangent segments; for rear-end collisions, one equation was built for daylight and one for the hours of darkness; for single-vehicle run-off-road crashes, one equation was built for wet road surface conditions and one for dry road surface conditions. An original numerical variable, SLEH, was designed to calibrate safety models reflecting the identified road surface (dry/wet), light conditions (day/night), geometric element (tangent segment/circular curve), and human factors (gender/age/number drivers) all together when the crash occurred, as provided by related police reports. The validation procedure succeeded. It emerged that males and females are involved in crashes of varying degrees of frequency, depending on the driving scenario that presents itself and the gender of the other drivers involved in the crash. Several different dangerous scenarios were identified: only female drivers on a dry road surface in daylight on tangent segments increased the risk for head-on/side collisions; only male drivers on a wet road surface in daylight on circular curves increased the risk for single-vehicle crashes; and crashes involving both female and male drivers on a dry road surface in daylight on a circular curve increased the risk for head-on/side collisions. CONCLUSION: According to the current study, based on the network approach for the allocation of economic resources and planning of road safety strategies, calibration of injury crash rate prediction models for specific target collision type is important because of the range of harms that are caused by different collision types. From these studies it is apparent that the age and gender of drivers considered together further refines how those factors contribute to crashes. Countermeasures (structural road interventions and/or safety awareness campaigns) can be planned to reduce the highest rate of injury crash for each gender and road scenario: the awareness campaigns cannot be generalized or vague but must be organized by age and gender, because this study shows that crash dynamics alter as these factors change, with consideration for the varying psychological traits of the driver groups. Before-and-after safety evaluations can be used to check the safety benefits of improvements carried out on the roadways, within budget constraints for improvement or safety compliance investments for future operation. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Condução de Veículo/psicologia , Planejamento Ambiental/estatística & dados numéricos , Saúde da População Rural/estatística & dados numéricos , Segurança , Ferimentos e Lesões/epidemiologia , Adolescente , Adulto , Distribuição por Idade , Condução de Veículo/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Distribuição por Sexo , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...