Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36559090

RESUMO

3D bioprinting is transforming tissue engineering in medicine by providing novel methods that are precise and highly customizable to create biological tissues. The selection of a "cell ink", a printable formulation, is an integral part of adapting 3D bioprinting processes to allow for process optimization and customization related to the target tissue. Bioprinting hydrogels allows for tailorable material, physical, chemical, and biological properties of the cell ink and is suited for biomedical applications. Hydrogel-based cell ink formulations are a promising option for the variety of techniques with which bioprinting can be achieved. In this review, we will examine some of the current hydrogel-based cell inks used in bioprinting, as well as their use in current and proposed future bioprinting methods. We will highlight some of the biological applications and discuss the development of new hydrogels and methods that can incorporate the completed print into the tissue or organ of interest.

2.
Cells ; 11(10)2022 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-35626748

RESUMO

Colonic epithelial cells are responsible for maintaining a delicate balance between luminal secretion and the absorption of fluids and ions. This review aims to discuss and update the model of colonic electrolyte secretion and absorption via the cystic fibrosis transmembrane regulator (CFTR), epithelial sodium channel (ENaC), Na-K-Cl cotransporters (NKCC1 and 2), Na-H exchangers (NHE1-4), colonic H,KATPase, and several other key components involved in multi-level transepithelial ion transport. Developments in our understanding of the activity, regulation, localization, and relationships of these ion transporters and their interactions have helped forge a more robust understanding of colonic ion movement that accounts for the colonic epithelium's role in mucosal pH modulation, the setting of osmotic gradients pivotal for fluid retention and secretion, and cell death regulation. Deviations from homeostatic ion transport cause diarrhea, constipation, and epithelial cell death and contribute to cystic fibrosis, irritable bowel syndrome (IBS), ulcerative colitis, and cancer pathologies. Signal transduction pathways that regulate electrolyte movement and the regulatory relationships between various sensors and transporters (CFTR as a target of CaSR regulation and as a regulator of ENaC and DRA, for example) are imperative aspects of a dynamic and comprehensive model of colonic ion homeostasis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Colo/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Eletrólitos/metabolismo , Canais Epiteliais de Sódio/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo
3.
Ann Anat ; 234: 151629, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33137459

RESUMO

INTRODUCTION: 3D printing has a wide range of applications in medicine. In surgery, this technique can be used for preoperative planning of complex procedures, production of patient specific implants, as well as training. However, accuracy evaluations of 3D vascular models are rare. OBJECTIVES: Aim of this study was to investigate the accuracy of patient-specific 3D-printed aortic anatomies. METHODS: Patients suffering from aorto-iliac aneurysms and with indication for treatment were selected on the basis of different anatomy and localization of the aneurysm in the period from January 1st 2014 to May 27th 2016. Six patients with aorto-iliac aneurysms were selected out of the database for 3D-printing. Subsequently, computed tomography (CT) images of the printed 3D-models were compared with the original CT data sets. RESULTS: The mean deviation of the six 3D-vascular models ranged between -0.73 mm and 0.14 mm compared to the original CT-data. The relative deviation of the measured values showed no significant difference between the 3D-vascular and the original patient CT-data. CONCLUSION: Our results showed that 3D printing has the potential to produce patient-specific 3D vascular models with reliable accuracy. This enables the use of such models for the development of new endovascular procedures and devices.


Assuntos
Procedimentos Endovasculares , Impressão Tridimensional , Aorta , Humanos , Modelos Anatômicos , Tomografia Computadorizada por Raios X
4.
Biomedicines ; 8(8)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781647

RESUMO

Vivostat Platelet-Rich Fibrin® (PRF) is an autologous platelet concentrate used for the local treatment of chronic or complicated wounds. Still, its application for this indication is not evidence-based. Therefore, we performed this monocentric retrospective pilot study investigating the clinical outcome of a local treatment of chronic or complicated wounds in 35 patients (23 male, 12 female, mean age 68.7 years) treated with Vivostat PRF®. This study population is the largest among published studies analyzing the clinical efficacy of Vivostat PRF® on chronic wounds so far. Using the perpendicular method we divided the wounds into three sizes (<10, 10-30, and >30 cm2). The clinical efficacy of the Vivostat PRF treatment was the primary endpoint and was divided into three groups of increasing degrees of wound improvement: (1) no improvement of the wound (wound area was not reduced > 10% under Vivostat PRF® treatment), (2) improvement of the wound (reduced area > 10% under Vivostat PRF® treatment) and (3) complete epithelialization (wounds that were completely re-epithelialized after Vivostat PRF® treatment). We included patients' diagnosis and concomitant diseases (peripheral arterial occlusive disease (PAOD)), chronic venous insufficiency (CVI)), diabetic foot syndrome (DFS)) in our data analysis in order to investigate their potential impact on the wound healing capacity of Vivostat PRF®. Our results show that in the entire study population, 13 out of 35 (37.1%) patients experienced wound improvement and 14 out of 35 (40%) patients showed complete epithelialization of their wound under Vivostat PRF® treatment. In summary, 77.1% of the treated patients benefited from the Vivostat PRF® therapy. These positive wound healing effects were all observed within the first three to six Vivostat PRF® applications. Subgroup analyses showed that Vivostat PRF® appeared to be more efficient in patients without CVI in comparison to patients with CVI (p = 0.02). Moreover, Vivostat PRF® treatment seems to be particularly efficient in PAOD-related wounds with a reduced crural arterial blood supply (p = 0.01). Additionally, we performed an experimental human in vivo study on ten male students where we artificially generated bilateral gluteal wounds and analyzed the influence of the Vivostat PRF® treatment on the expression of two genes (human beta Defensin-2, ((hBD-2) and human beta-Defensin-3 (hBD-3)) in keratinocytes of resected wound specimens that are induced during wound healing. Interestingly, this analysis revealed that only seven of out ten individuals showed a relevant hBD-2 and hBD-3 gene induction after Vivostat PRF® treatment. This led to the novel "key-lock-hypothesis". With the goal of an individualized precision medicine approach with optimized wound treatment strategies in the future, this is an important observation that demands further experimental and clinical studies.

5.
Ann Anat ; 231: 151519, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32305378

RESUMO

PURPOSE: Endovascular interventions have become standard procedures for the therapy of abdominal aortic aneurysms. Therefore, endovascular surgeons need special skills which have to be learned and trained. Additionally, authentic simulators are needed for further development of new endovascular devices and procedures. The aim of this project was to develop an authentic and modular endovascular simulation environment with patient-specific vascular anatomy for training and research purposes. MATERIAL AND METHODS: We first designed a prototype with exchangeable 3D-printed patient-specific vascular anatomy. Then, the feasibility of the prototype was validated by a simulation of an EVAR procedure in a clinical setting. RESULTS: We developed an authentic endovascular simulator with an exchangeable patient-specific vascular anatomy and performed an EVAR procedure under realistic conditions. The evaluation of the accuracy of the vascular models showed little deviation when compared with the original CT data. CONCLUSION: Endovascular simulators based on patient-specific 3D-printed vascular models can realistically mimic endovascular procedures and have the potential to be used for further development of new devices and grafts as well as for training purposes. Furthermore, in our opinion they can reduce the use of animals during developmental processes.


Assuntos
Vasos Sanguíneos/anatomia & histologia , Procedimentos Endovasculares/educação , Procedimentos Endovasculares/métodos , Estudos de Viabilidade , Humanos , Impressão Tridimensional , Treinamento por Simulação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...