Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 20899, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26864735

RESUMO

Electron-phonon coupling is a fundamental inelastic interaction in condensed matter and in molecules. Here we probe phonon excitations using quantum interference in electron transport occurring in short chains of anthraquinone based molecular junctions. By studying the dependence of molecular junction's conductance as a function of bias voltage and temperature, we show that inelastic scattering of electrons by phonons can be detected as features in conductance resulting from quenching of quantum interference. Our results are in agreement with density functional theory calculations and are well described by a generic two-site model in the framework of non-equilibrium Green's functions formalism. The importance of the observed inelastic contribution to the current opens up new ways for exploring coherent electron transport through molecular devices.

2.
Phys Rev Lett ; 99(12): 127005, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17930546

RESUMO

We have probed the current-phase relation of an atomic contact placed with a tunnel junction in a small superconducting loop. The measurements are in quantitative agreement with the predictions of a resistively shunted SQUID model in which the Josephson coupling of the contact is calculated using the independently determined transmissions of its conduction channels.

3.
Phys Rev Lett ; 94(19): 197003, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16090200

RESUMO

The ground state of highly damped PdNi based 0-pi ferromagnetic Josephson junctions shows a spontaneous half quantum vortex, sustained by a supercurrent of undetermined sign. This supercurrent flows in the electrode of a Josephson junction used as a detector and produces a phi(0)/4 shift in its magnetic diffraction pattern. We have measured the statistics of the positive or the negative sign shift occurring at the superconducting transition of such a junction. The randomness of the shift sign, the reproducibility of its magnitude, and the possibility of achieving exact flux compensation upon field cooling are the features which show that 0-pi junctions behave as classical spins, just as magnetic nanoparticles with uniaxial anisotropy.

4.
Phys Rev Lett ; 92(21): 217001, 2004 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-15245309

RESUMO

We present magnetization measurements of mesoscopic superconducting niobium loops containing a ferromagnetic (PdNi) pi junction. The loops are prepared on top of the active area of a micro-Hall sensor based on high mobility GaAs/AlGaAs heterostructures. We observe asymmetric switching of the loop between different magnetization states when reversing the sweep direction of the magnetic field. This provides evidence for a spontaneous current induced by the intrinsic phase shift of the pi junction. In addition, the presence of the spontaneous current near zero applied field is directly revealed by an increase of the magnetic moment with decreasing temperature, which results in half integer flux quantization in the loop at low temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...