Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Neurophysiol ; 125(2): 306-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23899859

RESUMO

OBJECTIVE: Sleep spindles have been suggested as surrogates of thalamo-cortical activity. Internal frequency modulation within a spindle's time frame has been demonstrated in healthy subjects, showing that spindles tend to decelerate their frequency before termination. We investigated internal frequency modulation of slow and fast spindles according to Obstructive Sleep Apnea (OSA) severity and brain topography. METHODS: Seven non-OSA subjects and 21 patients with OSA contributed with 30min of Non-REM sleep stage 2, subjected to a Matching pursuit procedure with Gabor chirplet functions for automatic detection of sleep spindles and quantification of sleep spindle internal frequency modulation (chirp rate). RESULTS: Moderate OSA patients showed an inferior percentage of slow spindles with deceleration when compared to Mild and Non-OSA groups in frontal and parietal regions. In parietal regions, the percentage of slow spindles with deceleration was negatively correlated with global apnea-hypopnea index (rs=-0.519, p=0.005). DISCUSSION: Loss of physiological sleep spindle deceleration may either represent a disruption of thalamo-cortical loops generating spindle oscillations or some compensatory mechanism, an interesting venue for future research in the context of cognitive dysfunction in OSA. SIGNIFICANCE: Quantification of internal frequency modulation (chirp rate) is proposed as a promising approach to advance description of sleep spindle dynamics in brain pathology.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Apneia Obstrutiva do Sono/fisiopatologia , Sono/fisiologia , Adulto , Mapeamento Encefálico , Eletroencefalografia , Humanos
2.
J Neurosci Methods ; 197(1): 158-64, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21291911

RESUMO

Sleep spindles are considered as a marker of integrity for thalamo-cortical circuits. Recently, attention has been given to internal frequency variation in sleep spindles. In this study, a procedure based on matching pursuit with a Gabor-chirplet dictionary was applied in order to measure chirp rate in atoms representing sleep spindles, also categorized into negative, positive or zero chirp types. The sample comprised 707 EEG segments containing visual sleep spindles, labeled TP, obtained from nine healthy male volunteers (aged 20-34, average 24.6 y). Control datasets were 333 non-REM (NREM) sleep background segments and 287 REM sleep intervals, each with 16s duration. Analyses were carried out on the C3-A2 EEG channel. In TP and NREM groups, the proportion of non-null chirp types was non-random and total chirp distribution was asymmetrical towards negative values, in contrast to REM. Median negative chirp rate in the TP and NREM groups was significantly lower than in REM (-0.4 Hz/s vs -0.3 Hz/s, P < 0.05). Negative chirp atoms outnumbered positives by 50% in TP, while in NREM and REM, they were, respectively, only 22% and 12% more prevalent. TP negative chirp atoms were significantly higher in amplitude compared to positive or zero types. Considering individual subjects, 88.9% had a TP negative/positive chirp ratio above 1 (mean ± sd=1.64 ± 0.65). We propose there is increasing evidence, corroborated by the present study, favoring systematic measurement of sleep spindle chirp rate or internal frequency variation. Preferential occurrence of negatively chirping spindles is consistent with the hypothesis of electrophysiological modulation of neocortical memory consolidation.


Assuntos
Eletroencefalografia/métodos , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Sono REM/fisiologia , Sono/fisiologia , Adulto , Ondas Encefálicas/fisiologia , Humanos , Masculino , Tálamo/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...