Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 18(10): e1010437, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36251695

RESUMO

Genome wide association studies (GWAS) can play an essential role in understanding genetic basis of complex traits in plants and animals. Conventional SNP-based linear mixed models (LMM) that marginally test single nucleotide polymorphisms (SNPs) have successfully identified many loci with major and minor effects in many GWAS. In plant, the relatively small population size in GWAS and the high genetic diversity found in many plant species can impede mapping efforts on complex traits. Here we present a novel haplotype-based trait fine-mapping framework, HapFM, to supplement current GWAS methods. HapFM uses genotype data to partition the genome into haplotype blocks, identifies haplotype clusters within each block, and then performs genome-wide haplotype fine-mapping to prioritize the candidate causal haplotype blocks of trait. We benchmarked HapFM, GEMMA, BSLMM, GMMAT, and BLINK in both simulated and real plant GWAS datasets. HapFM consistently resulted in higher mapping power than the other GWAS methods in high polygenicity simulation setting. Moreover, it resulted in smaller mapping intervals, especially in regions of high LD, achieved by prioritizing small candidate causal blocks in the larger haplotype blocks. In the Arabidopsis flowering time (FT10) datasets, HapFM identified four novel loci compared to GEMMA's results, and the average mapping interval of HapFM was 9.6 times smaller than that of GEMMA. In conclusion, HapFM is tailored for plant GWAS to result in high mapping power on complex traits and improved on mapping resolution to facilitate crop improvement.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Haplótipos/genética , Desequilíbrio de Ligação , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Fenótipo
3.
G3 (Bethesda) ; 11(3)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33772307

RESUMO

The widely recounted story of the origin of cultivated strawberry (Fragaria × ananassa) oversimplifies the complex interspecific hybrid ancestry of the highly admixed populations from which heirloom and modern cultivars have emerged. To develop deeper insights into the three-century-long domestication history of strawberry, we reconstructed the genealogy as deeply as possible-pedigree records were assembled for 8,851 individuals, including 2,656 cultivars developed since 1775. The parents of individuals with unverified or missing pedigree records were accurately identified by applying an exclusion analysis to array-genotyped single-nucleotide polymorphisms. We identified 187 wild octoploid and 1,171 F. × ananassa founders in the genealogy, from the earliest hybrids to modern cultivars. The pedigree networks for cultivated strawberry are exceedingly complex labyrinths of ancestral interconnections formed by diverse hybrid ancestry, directional selection, migration, admixture, bottlenecks, overlapping generations, and recurrent hybridization with common ancestors that have unequally contributed allelic diversity to heirloom and modern cultivars. Fifteen to 333 ancestors were predicted to have transmitted 90% of the alleles found in country-, region-, and continent-specific populations. Using parent-offspring edges in the global pedigree network, we found that selection cycle lengths over the past 200 years of breeding have been extraordinarily long (16.0-16.9 years/generation), but decreased to a present-day range of 6.0-10.0 years/generation. Our analyses uncovered conspicuous differences in the ancestry and structure of North American and European populations, and shed light on forces that have shaped phenotypic diversity in F. × ananassa.


Assuntos
Domesticação , Fragaria , Fragaria/genética , Hibridização Genética , Melhoramento Vegetal
4.
BMC Genomics ; 20(1): 701, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500583

RESUMO

BACKGROUND: The ability to accurately and comprehensively identify genomic variations is critical for plant studies utilizing high-throughput sequencing. Most bioinformatics tools for processing next-generation sequencing data were originally developed and tested in human studies, raising questions as to their efficacy for plant research. A detailed evaluation of the entire variant calling pipeline, including alignment, variant calling, variant filtering, and imputation was performed on different programs using both simulated and real plant genomic datasets. RESULTS: A comparison of SOAP2, Bowtie2, and BWA-MEM found that BWA-MEM was consistently able to align the most reads with high accuracy, whereas Bowtie2 had the highest overall accuracy. Comparative results of GATK HaplotypCaller versus SAMtools mpileup indicated that the choice of variant caller affected precision and recall differentially depending on the levels of diversity, sequence coverage and genome complexity. A cross-reference experiment of S. lycopersicum and S. pennellii reference genomes revealed the inadequacy of single reference genome for variant discovery that includes distantly-related plant individuals. Machine-learning-based variant filtering strategy outperformed the traditional hard-cutoff strategy resulting in higher number of true positive variants and fewer false positive variants. A 2-step imputation method, which utilized a set of high-confidence SNPs as the reference panel, showed up to 60% higher accuracy than direct LD-based imputation. CONCLUSIONS: Programs in the variant discovery pipeline have different performance on plant genomic dataset. Choice of the programs is subjected to the goal of the study and available resources. This study serves as an important guiding information for plant biologists utilizing next-generation sequencing data for diversity characterization and crop improvement.


Assuntos
Variação Genética , Genômica/métodos , Benchmarking , Bases de Dados Genéticas , Genoma de Planta/genética
5.
Plant Sci ; 281: 186-205, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30824051

RESUMO

The combination of advanced genomics, genome editing and plant transformation biology presents a powerful platform for basic plant research and crop improvement. Together these advances provide the tools to identify genes as targets for direct editing as single base pair changes, deletions, insertions and site specific homologous recombination. Recent breakthrough technologies using morphogenic regulators in plant transformation creates the ability to introduce reagents specific toward their identified targets and recover stably transformed and/or edited plants which are genotype independent. These technologies enable the possibility to alter a trait in any variety, without genetic disruption which would require subsequent extensive breeding, but rather to deliver the same variety with one trait changed. Regulatory issues regarding this technology will predicate how broadly these technologies will be implemented. In addition, education will play a crucial role for positive public acceptance. Taken together these technologies comprise a platform for advanced breeding which is an imperative for future world food security.


Assuntos
Genoma de Planta/genética , Produtos Agrícolas/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Melhoramento Vegetal
6.
BMC Genomics ; 20(1): 41, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642244

RESUMO

BACKGROUND: The apomictic reproductive mode of Brachiaria (syn. Urochloa) forage species allows breeders to faithfully propagate heterozygous genotypes through seed over multiple generations. In Brachiaria, reproductive mode segregates as single dominant locus, the apospory-specific genomic region (ASGR). The AGSR has been mapped to an area of reduced recombination on Brachiaria decumbens chromosome 5. A primer pair designed within ASGR-BABY BOOM-like (BBML), the candidate gene for the parthenogenesis component of apomixis in Pennisetum squamulatum, was diagnostic for reproductive mode in the closely related species B. ruziziensis, B. brizantha, and B. decumbens. In this study, we used a mapping population of the distantly related commercial species B. humidicola to map the ASGR and test for conservation of ASGR-BBML sequences across Brachiaria species. RESULTS: Dense genetic maps were constructed for the maternal and paternal genomes of a hexaploid (2n = 6x = 36) B. humidicola F1 mapping population (n = 102) using genotyping-by-sequencing, simple sequence repeat, amplified fragment length polymorphism, and transcriptome derived single nucleotide polymorphism markers. Comparative genomics with Setaria italica provided confirmation for x = 6 as the base chromosome number of B. humidicola. High resolution molecular karyotyping indicated that the six homologous chromosomes of the sexual female parent paired at random, whereas preferential pairing of subgenomes was observed in the apomictic male parent. Furthermore, evidence for compensated aneuploidy was found in the apomictic parent, with only five homologous linkage groups identified for chromosome 5 and seven homologous linkage groups of chromosome 6. The ASGR mapped to B. humidicola chromosome 1, a region syntenic with chromosomes 1 and 7 of S. italica. The ASGR-BBML specific PCR product cosegregated with the ASGR in the F1 mapping population, despite its location on a different carrier chromosome than B. decumbens. CONCLUSIONS: The first dense molecular maps of B. humidicola provide strong support for cytogenetic evidence indicating a base chromosome number of six in this species. Furthermore, these results show conservation of the ASGR across the Paniceae in different chromosomal backgrounds and support postulation of the ASGR-BBML as candidate genes for the parthenogenesis component of apomixis.


Assuntos
Apomixia , Brachiaria/genética , Mapeamento Cromossômico , Partenogênese/genética , Cromossomos de Plantas , Genômica , Cariotipagem , Translocação Genética
7.
G3 (Bethesda) ; 7(6): 1913-1926, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28450374

RESUMO

Describing the genetic diversity in the gene pool of crops will provide breeders with novel resources for varietal improvement. Nested Association Mapping (NAM) populations are uniquely suited for characterizing parental diversity through the shuffling and fixation of parental haplotypes. Here, we describe a set of 1879 rice NAM lines created through the selfing and single-seed descent of F1 hybrids derived from elite IR64 indica crossed with 10 diverse tropical japonica lines. Genotyping data indicated tropical japonica alleles were captured at every queried locus despite the presence of segregation distortion factors. Several distortion loci were mapped, both shared and unique, among the 10 populations. Using two-point and multi-point genetic map calculations, our datasets achieved the ∼1500 cM expected map size in rice. Finally, we highlighted the utility of the NAM lines for QTL mapping, including joint analysis across the 10 populations, by confirming known QTL locations for the trait days to heading.


Assuntos
Mapeamento Cromossômico , Estudos de Associação Genética , Oryza/genética , Cruzamentos Genéticos , Bases de Dados de Ácidos Nucleicos , Frequência do Gene , Ligação Genética , Variação Genética , Genética Populacional , Genótipo , Oryza/classificação , Fenótipo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Recombinação Genética
8.
Sci Adv ; 2(10): e1600991, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27819048

RESUMO

Sex determination in maize involves the production of staminate and pistillate florets from an initially bisexual floral meristem. Pistil elimination in staminate florets requires jasmonic acid signaling, and functional pistils are protected by the action of the silkless 1 (sk1) gene. The sk1 gene was identified and found to encode a previously uncharacterized family 1 uridine diphosphate glycosyltransferase that localized to the plant peroxisomes. Constitutive expression of an sk1 transgene protected all pistils in the plant, causing complete feminization, a gain-of-function phenotype that operates by blocking the accumulation of jasmonates. The segregation of an sk1 transgene was used to effectively control the production of pistillate and staminate inflorescences in maize plants.


Assuntos
Glicosiltransferases , Inflorescência , Peroxissomos , Proteínas de Plantas , Zea mays , Ciclopentanos/metabolismo , Glicosiltransferases/biossíntese , Glicosiltransferases/genética , Inflorescência/enzimologia , Inflorescência/genética , Oxilipinas/metabolismo , Peroxissomos/enzimologia , Peroxissomos/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Zea mays/enzimologia , Zea mays/genética
9.
Genetics ; 203(3): 1117-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27206716

RESUMO

Apomixis, asexual reproduction through seed, enables breeders to identify and faithfully propagate superior heterozygous genotypes by seed without the disadvantages of vegetative propagation or the expense and complexity of hybrid seed production. The availability of new tools such as genotyping by sequencing and bioinformatics pipelines for species lacking reference genomes now makes the construction of dense maps possible in apomictic species, despite complications including polyploidy, multisomic inheritance, self-incompatibility, and high levels of heterozygosity. In this study, we developed saturated linkage maps for the maternal and paternal genomes of an interspecific Brachiaria ruziziensis (R. Germ. and C. M. Evrard) × B. decumbens Stapf. F1 mapping population in order to identify markers linked to apomixis. High-resolution molecular karyotyping and comparative genomics with Setaria italica (L.) P. Beauv provided conclusive evidence for segmental allopolyploidy in B. decumbens, with strong preferential pairing of homologs across the genome and multisomic segregation relatively more common in chromosome 8. The apospory-specific genomic region (ASGR) was mapped to a region of reduced recombination on B. decumbens chromosome 5. The Pennisetum squamulatum (L.) R.Br. PsASGR-BABY BOOM-like (psASGR-BBML)-specific primer pair p779/p780 was in perfect linkage with the ASGR in the F1 mapping population and diagnostic for reproductive mode in a diversity panel of known sexual and apomict Brachiaria (Trin.) Griseb. and P. maximum Jacq. germplasm accessions and cultivars. These findings indicate that ASGR-BBML gene sequences are highly conserved across the Paniceae and add further support for the postulation of the ASGR-BBML as candidate genes for the apomictic function of parthenogenesis.


Assuntos
Brachiaria/genética , Cromossomos de Plantas/genética , Ligação Genética , Partenogênese/genética , Reprodução Assexuada/genética , Apomixia/genética , Proteínas de Arabidopsis/genética , Brachiaria/crescimento & desenvolvimento , Mapeamento Cromossômico , Genótipo , Polimorfismo de Nucleotídeo Único , Poliploidia , Sementes/genética , Fatores de Transcrição/genética
10.
Plant Biotechnol J ; 14(11): 2168-2175, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27154282

RESUMO

Wide crosses have been used for decades as a method for transferring novel genetic material and traits in plant breeding. Historically, many products of wide crosses require tedious and inefficient surgical embryo rescue prior to embryo abortion to recover single plantlets. We have utilized transgenic switchgrass (Panicum virgatum L. cv Alamo) as a pollen donor in conjunction with antibiotic or herbicide selection for recovery of intra-and interspecific F1 crosses by using developing ovules from the female parent and selecting for embryogenic cultures derived from the in situ immature embryo. Using this approach, several intravarietial crosses were generated between transgenic Alamo and the switchgrass varieties Kanlow, Blackwell and Cave-in-Rock as well as an interspecific cross with Atlantic coastal panicgrass. This procedure selected F1 embryogenic callus produced from the developing embryo contained within isolated immature ovules. Several clonal plants were successfully regenerated from each cross. Southern blot, PCR, phenotypic analyses and genomic analysis confirmed F1 hybrids. Using genotyping-by-sequencing shows the hybridization of the recovered plants by determining the ratio of transgressive markers to total compared markers between parents and their potential offspring. The ratio of transgressive markers to total compared markers was significantly lower between parents and their predicted offspring than between parents and offspring unrelated to them. This approach provides the possibility to move useful transgenes into varieties that are recalcitrant to direct transformation which can be optionally segregated thus useful to create new hybrids, as well as recovery of wide crosses that are either difficult or impossible using traditional techniques.


Assuntos
Panicum/genética , Plantas Geneticamente Modificadas/genética , Cruzamento , Cruzamentos Genéticos , Genótipo , Hibridização Genética , Panicum/embriologia , Plantas Geneticamente Modificadas/fisiologia
11.
Genetics ; 202(2): 487-95, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715670

RESUMO

Low-coverage next-generation sequencing methodologies are routinely employed to genotype large populations. Missing data in these populations manifest both as missing markers and markers with incomplete allele recovery. False homozygous calls at heterozygous sites resulting from incomplete allele recovery confound many existing imputation algorithms. These types of systematic errors can be minimized by incorporating depth-of-sequencing read coverage into the imputation algorithm. Accordingly, we developed Low-Coverage Biallelic Impute (LB-Impute) to resolve missing data issues. LB-Impute uses a hidden Markov model that incorporates marker read coverage to determine variable emission probabilities. Robust, highly accurate imputation results were reliably obtained with LB-Impute, even at extremely low (<1×) average per-marker coverage. This finding will have implications for the design of genotype imputation algorithms in the future. LB-Impute is publicly available on GitHub at https://github.com/dellaporta-laboratory/LB-Impute.


Assuntos
Alelos , Genética Populacional , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Algoritmos , Genoma de Planta , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Cadeias de Markov , Plantas/genética , Reprodutibilidade dos Testes , Treinamento por Simulação
12.
Plant Genome ; 8(2): eplantgenome2015.01.0001, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33228322

RESUMO

Switchgrass (Panicum virgatum L.) and its relatives are regarded as top bioenergy crop candidates; however, one critical barrier is the introduction of useful genetic diversity and the development of new cultivars and hybrids. Combining genomes from related cultivars and species provides an opportunity to introduce new traits. In switchgrass, a breeding advantage would be achieved by combining the genomes of intervarietal ecotypes or interspecific hybrids. The recovery of wide crosses, however, is often tedious and may involve complicated embryo rescue and numerous backcrosses. Here, we demonstrate a straightforward approach to wide crosses involving the use of a selectable transgene for recovery of interspecific [P. virgatum cv. Alamo × Panicum amarum Ell. var amarulum or Atlantic Coastal Panicgrass (ACP)] F1 hybrids followed by backcrossing to generate a nontransgenic admixture population. A nontransgenic herbicide-sensitive (HbS) admixture population of 83 F1 BC1 progeny was analyzed by genotyping-by-sequencing (GBS) to characterize local ancestry, parental contribution, and patterns of recombination. These results demonstrate a widely applicable breeding strategy that makes use of transgenic selectable resistance to identify and recover true hybrids.

13.
BMC Genomics ; 15: 979, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25406744

RESUMO

BACKGROUND: Many areas critical to agricultural production and research, such as the breeding and trait mapping in plants and livestock, require robust and scalable genotyping platforms. Genotyping-by-sequencing (GBS) is a one such method highly suited to non-human organisms. In the GBS protocol, genomic DNA is fractionated via restriction digest, then reduced representation is achieved through size selection. Since many restriction sites are conserved across a species, the sequenced portion of the genome is highly consistent within a population. This makes the GBS protocol highly suited for experiments that require surveying large numbers of markers within a population, such as those involving genetic mapping, breeding, and population genomics. We have modified the GBS technology in a number of ways. Custom, enzyme specific adaptors have been replaced with standard Illumina adaptors compatible with blunt-end restriction enzymes. Multiplexing is achieved through a dual barcoding system, and bead-based library preparation protocols allows for in-solution size selection and eliminates the need for columns and gels. RESULTS: A panel of eight restriction enzymes was selected for testing on B73 maize and Nipponbare rice genomic DNA. Quality of the data was demonstrated by identifying that the vast majority of reads from each enzyme aligned to restriction sites predicted in silico. The link between enzyme parameters and experimental outcome was demonstrated by showing that the sequenced portion of the genome was adaptable by selecting enzymes based on motif length, complexity, and methylation sensitivity. The utility of the new GBS protocol was demonstrated by correctly mapping several in a maize F2 population resulting from a B73×Country Gentleman test cross. CONCLUSIONS: This technology is readily adaptable to different genomes, highly amenable to multiplexing and compatible with over forty commercially available restriction enzymes. These advancements represent a major improvement in genotyping technology by providing a highly flexible and scalable GBS that is readily implemented for studies on genome-wide variation.


Assuntos
Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oryza/genética , Zea mays/genética , Composição de Bases/genética , Pareamento de Bases/genética , Simulação por Computador , Cruzamentos Genéticos , Bases de Dados Genéticas , Genética Populacional , Genômica , Metilação , Característica Quantitativa Herdável , Reprodutibilidade dos Testes , Mapeamento por Restrição
14.
PLoS One ; 9(1): e87053, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498020

RESUMO

Since their initial discovery, transposons have been widely used as mutagens for forward and reverse genetic screens in a range of organisms. The problems of high copy number and sequence divergence among related transposons have often limited the efficiency at which tagged genes can be identified. A method was developed to identity the locations of Mutator (Mu) transposons in the Zea mays genome using a simple enrichment method combined with genome resequencing to identify transposon junction fragments. The sequencing library was prepared from genomic DNA by digesting with a restriction enzyme that cuts within a perfectly conserved motif of the Mu terminal inverted repeats (TIR). Paired-end reads containing Mu TIR sequences were computationally identified and chromosomal sequences flanking the transposon were mapped to the maize reference genome. This method has been used to identify Mu insertions in a number of alleles and to isolate the previously unidentified lazy plant1 (la1) gene. The la1 gene is required for the negatively gravitropic response of shoots and mutant plants lack the ability to sense gravity. Using bioinformatic and fluorescence microscopy approaches, we show that the la1 gene encodes a cell membrane and nuclear localized protein. Our Mu-Taq method is readily adaptable to identify the genomic locations of any insertion of a known sequence in any organism using any sequencing platform.


Assuntos
Elementos de DNA Transponíveis/genética , Genes de Plantas/genética , Genoma de Planta/genética , Gravitropismo/genética , Análise de Sequência de DNA/métodos , Zea mays/genética , Alelos , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Enzimas de Restrição do DNA/metabolismo , DNA de Plantas/química , DNA de Plantas/genética , DNA de Plantas/metabolismo , Biblioteca Genômica , Gravitação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese Insercional , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/fisiologia , Reação em Cadeia da Polimerase , Homologia de Sequência do Ácido Nucleico , Zea mays/fisiologia
15.
Mol Biol Evol ; 29(12): 3921-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22855537

RESUMO

We surveyed genetic variation in alr2, an allodeterminant of the colonial hydroid Hydractinia symbiolongicarpus. We generated cDNA from a sample of 239 Hydractinia colonies collected at Lighthouse Point, Connecticut, and identified 473 alr2 alleles, 198 of which were unique. Rarefaction analysis suggested that the sample was near saturation. Most alleles were rare, with 86% occurring at frequencies of 1% or less. Alleles were highly variable, diverging on average by 18% of the amino acids in a predicted extracellular domain of the molecule. Analysis of 152 full-length alleles confirmed the existence of two structural types, defined by exons 4-8 of the gene. Several residues of the predicted immunoglobulin superfamily-like domains display signatures of positive selection. We also identified 77 unique alr2 pseudogene sequences from 85 colonies. Twenty-seven of these sequences matched expressed alr2 sequences from other colonies. This observation is consistent with pseudogenes contributing to alr2 diversification through sequence donation. A more limited collection of animals was made from a distant, relict population of H. symbiolongicarpus. Sixty percent of the unique sequences identified in this sample were found to match sequences from the Lighthouse Point population. The large number of alr2 alleles, their degree of divergence, the predominance of rare alleles in the population, their persistence over broad spatial and temporal scales, and the signatures of positive selection in multiple residues of the putative recognition domain paint a consistent picture of negative-frequency-dependent selection operating in this system. The genetic diversity observed at alr2 is comparable to that of the most highly polymorphic genetic systems known to date.


Assuntos
Evolução Molecular , Genes/genética , Variação Genética , Hidrozoários/genética , Seleção Genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Connecticut , Código de Barras de DNA Taxonômico , DNA Complementar/genética , Éxons/genética , Frequência do Gene , Genética Populacional , Dados de Sequência Molecular , Pseudogenes/genética , Reprodução/genética , Análise de Sequência de DNA , Especificidade da Espécie
16.
Mol Biol Evol ; 28(2): 933-47, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20966116

RESUMO

Hydractinia symbiolongicarpus, a colonial cnidarian (class Hydrozoa) epibiont on hermit crab shells, is well established as a model for genetic studies of allorecognition. Recently, two linked loci, allorecognition (alr) 1 and alr2, were identified by positional cloning and shown to be major determinants of histocompatibility. Both genes encode putative transmembrane proteins with hypervariable extracellular domains similar to immunoglobulin (Ig)-like domains. We sought to characterize the naturally occurring variation at the alr2 locus and to understand the origins of this molecular diversity. We examined full-length cDNA coding sequences derived from a sample of 21 field-collected colonies, including 18 chosen haphazardly and two laboratory reference strains. Of the 35 alleles recovered from the 18 unbiased samples, 34 encoded unique gene products. We identified two distinct structural classes of alleles that varied over a large central region of the gene but both possessed highly polymorphic extracellular domains I, similar to an Ig-like V-set domain. The discovery of structurally chimeric alleles provided evidence that interallelic recombination may contribute to alr2 variation. Comparisons of the genomic region encompassing alr2 from two field-derived haplotypes and one laboratory reference sequence revealed a history of structural variation at the haplotype level as well. Maintenance of large numbers of equally rare alleles in a natural population is a hallmark of negative frequency-dependent selection and is expected to produce high levels of heterozygosity. The observed alr2 allelic diversity is comparable with that found in immune recognition molecules such as human leukocyte antigens, B cell Igs, or natural killer cell Ig-like receptors.


Assuntos
Variação Genética , Hidrozoários/genética , Proteínas/genética , Alelos , Animais
17.
G3 (Bethesda) ; 1(6): 499-504, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22384360

RESUMO

The Hydractinia allorecognition complex (ARC) was initially identified as a single chromosomal interval using inbred and congenic lines. The production of defined lines necessarily homogenizes genetic background and thus may be expected to obscure the effects of unlinked allorecognition loci should they exist. Here, we report the results of crosses in which inbred lines were out-crossed to wild-type animals in an attempt to identify dominant, codominant, or incompletely dominant modifiers of allorecognition. A claim for the existence of modifiers unlinked to ARC was rejected for three different genetic backgrounds. Estimates of the genetic map distance of ARC in two wild-type haplotypes differed markedly from one another and from that measured in congenic lines. These results suggest that additional allodeterminants exist in the Hydractinia ARC.

18.
Curr Biol ; 20(12): 1122-7, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20537535

RESUMO

Allorecognition, the ability to discriminate between self and nonself, is ubiquitous among colonial metazoans and widespread among aclonal taxa. Genetic models for the study of allorecognition have been developed in the jawed vertebrates, invertebrate chordate Botryllus, and cnidarian Hydractinia. In Botryllus, two genes contribute to the histocompatibility response, FuHC and fester. In the cnidarian Hydractinia, one of the two known allorecognition loci, alr2, has been isolated, and a second linked locus, alr1, has been mapped to the same chromosomal region, called the allorecognition complex (ARC). Here we isolate alr1 by positional cloning and report it to encode a transmembrane receptor protein with two hypervariable extracellular regions similar to immunoglobulin (Ig)-like domains. Variation in the extracellular domain largely predicts fusibility within and between laboratory strains and wild-type isolates. alr1 was found embedded in a family of immunoglobulin superfamily (IgSF)-like genes, thus establishing that the ARC histocompatibility complex is an invertebrate IgSF-like gene complex.


Assuntos
Cnidários/genética , Imunoglobulinas/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Imunoglobulinas/química , Dados de Sequência Molecular , Fenótipo , Homologia de Sequência de Aminoácidos
19.
Curr Biol ; 19(7): 583-9, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19303297

RESUMO

Colonial marine invertebrates, such as sponges, corals, bryozoans, and ascidians, often live in densely populated communities where they encounter other members of their species as they grow over their substratum. Such encounters typically lead to a natural histocompatibility response in which colonies either fuse to become a single, chimeric colony or reject and aggressively compete for space. These allorecognition phenomena mediate intraspecific competition, support allotypic diversity, control the level at which selection acts, and resemble allogeneic interactions in pregnancy and transplantation. Despite the ubiquity of allorecognition in colonial phyla, however, its molecular basis has not been identified beyond what is currently known about histocompatibility in vertebrates and protochordates. We positionally cloned an allorecognition gene by using inbred strains of the cnidarian, Hydractinia symbiolongicarpus, which is a model system for the study of invertebrate allorecognition. The gene identified encodes a putative transmembrane receptor expressed in all tissues capable of allorecognition that is highly polymorphic and predicts allorecognition responses in laboratory and field-derived strains. This study reveals that a previously undescribed hypervariable molecule bearing three extracellular domains with greatest sequence similarity to the immunoglobulin superfamily is an allodeterminant in a lower metazoan.


Assuntos
Histocompatibilidade/imunologia , Hidrozoários/imunologia , Sequência de Aminoácidos , Animais , Autoimunidade/imunologia , Histocompatibilidade/genética , Hidrozoários/citologia , Hidrozoários/genética , Complexo Principal de Histocompatibilidade , Dados de Sequência Molecular , Fenótipo , Polimorfismo Genético , Alinhamento de Sequência
20.
Science ; 323(5911): 262-5, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19131630

RESUMO

Sex determination in maize is controlled by a developmental cascade leading to the formation of unisexual florets derived from an initially bisexual floral meristem. Abortion of pistil primordia in staminate florets is controlled by a tasselseed-mediated cell death process. We positionally cloned and characterized the function of the sex determination gene tasselseed1 (ts1). The TS1 protein encodes a plastid-targeted lipoxygenase with predicted 13-lipoxygenase specificity, which suggests that TS1 may be involved in the biosynthesis of the plant hormone jasmonic acid. In the absence of a functional ts1 gene, lipoxygenase activity was missing and endogenous jasmonic acid concentrations were reduced in developing inflorescences. Application of jasmonic acid to developing inflorescences rescued stamen development in mutant ts1 and ts2 inflorescences, revealing a role for jasmonic acid in male flower development in maize.


Assuntos
Ciclopentanos/metabolismo , Lipoxigenase/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Zea mays/genética , Zea mays/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Ciclopentanos/farmacologia , Flores/crescimento & desenvolvimento , Genes de Plantas , Lipoxigenase/química , Lipoxigenase/genética , Dados de Sequência Molecular , Mutação , Oxilipinas/farmacologia , Proteínas de Plantas/química , Plastídeos/enzimologia , Zea mays/enzimologia , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...