Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Eur Geriatr Med ; 15(2): 411-421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38329618

RESUMO

PURPOSE: Delirium risk assessment in the acute-care setting generally does not account for frailty. The objective of this retrospective study was to identify factors associated with delirium, considering the interdependency of clinical variables with frailty syndrome in complex older patients. METHODS: The clinical records of 587 participants (248 M, median age 84) were reviewed, collecting clinical, anamnestic and pharmacological data. Frailty syndrome was assessed with the Clinical Frailty Scale (CFS). Delirium was the main study endpoint. The correlations of the considered anamnestic and clinical variables with delirium and its subtypes were investigated selecting only those variables not showing a high overlap with frailty. Correlations associated with a 25% excess of frequency of delirium in comparison with the average of the population were considered as statistically significant. RESULTS: Delirium was detected in 117 (20%) participants. The presence of one among age > 85 years old, CFS > 4 and invasive devices explained 95% of delirium cases. The main factors maximizing delirium incidence at the individual level were dementia, other psychiatric illness, chronic antipsychotic treatment, and invasive devices. The coexistence of three of these parameters was associated with a peak frequency of delirium, ranging from 57 to 61%, mostly hypoactive forms. CONCLUSIONS: In acute-care wards, frailty exhibited a strong association with delirium during hospitalization, while at the individual level, dementia and the use of antipsychotics remained important risk factors. Modern clinical prediction tools for delirium should account for frailty syndrome.


Assuntos
Delírio , Demência , Fragilidade , Humanos , Idoso , Idoso de 80 Anos ou mais , Fragilidade/complicações , Fragilidade/diagnóstico , Fragilidade/epidemiologia , Idoso Fragilizado , Estudos Retrospectivos , Delírio/epidemiologia , Avaliação Geriátrica , Demência/epidemiologia
2.
Inorg Chem ; 62(12): 5016-5022, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36926858

RESUMO

We present a new method to synthesize bulk indium nitride by means of a simple solid-state chemical reaction carried out under hydrostatic high-pressure/high-temperature conditions in a multi-anvil apparatus, not involving gases or solvents during the process. The reaction occurs between the binary oxide In2O3 and the highly reactive Li3N as the nitrogen source, in the powder form. The formation of the hexagonal phase of InN, occurring at 350 °C and P ≥ 3 GPa, was successfully confirmed by powder X-ray diffraction, with the presence of Li2O as a unique byproduct. A simple washing process in weak acidic solution followed by centrifugation allowed us to obtain pure InN polycrystalline powders as a precipitate. With an analogous procedure, it was possible to obtain pure bulk GaN, from Ga2O3 and Li3N at T ≥ 600 °C and P ≥ 2.5 GPa. These results point out, particularly for InN, a clean, and innovative way to produce significant quantities of one of the most promising nitrides in the field of electronics and energy technologies.

3.
Nat Commun ; 13(1): 7968, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575166

RESUMO

Multiferroics, showing the coexistence of two or more ferroic orderings at room temperature, could harness a revolution in multifunctional devices. However, most of the multiferroic compounds known to date are not magnetically and electrically ordered at ambient conditions, so the discovery of new materials is pivotal to allow the development of the field. In this work, we show that BaFe2O4 is a previously unrecognized room temperature multiferroic. X-ray and neutron diffraction allowed to reveal the polar crystal structure of the compound as well as its antiferromagnetic behavior, confirmed by bulk magnetometry characterizations. Piezo force microscopy and electrical measurements show the polarization to be switchable by the application of an external field, while symmetry analysis and calculations based on density functional theory reveal the improper nature of the ferroelectric component. Considering the present findings, we propose BaFe2O4 as a Bi- and Pb-free model for the search of new advanced multiferroic materials.

5.
Inorg Chem ; 59(16): 11670-11675, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799499

RESUMO

We report on the high-pressure solid-state synthesis and the detailed structural characterization of the metastable, CuAu-type CuInS2 (CA-CIS) phase. Although often present in CIS thin films as unwanted phase, it has been never synthesized in pure form, and its effect on the performance of CIS-based solar cells has been long debated. In this work, pure CA-CIS phase is synthesized in bulk polycrystalline form through a high-pressure-high-temperature solid-state reaction. Single-crystal X-rays diffraction reveals the formation of tetragonal CA-CIS (a = 3.9324(5), c = 5.4980(7) Å) either in cation-ordered and disordered phase, pointing out the role of the pressure/temperature increase on the Cu/In ordering. The resistivity measurements performed on CA-CIS show low resistivity and a flat trend vs temperature and, in the case of the ordered phase, highlight a bad-metallic behavior, probably due to a high level of doping. These findings clearly rule out the possibility of a beneficial effect of this phase on the CIS-based thin film solar cells.

6.
Ultrasound Med Biol ; 46(11): 2908-2917, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32807570

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) is characterized by severe pneumonia and/or acute respiratory distress syndrome in about 20% of infected patients. Computed tomography (CT) is the routine imaging technique for diagnosis and monitoring of COVID-19 pneumonia. Chest CT has high sensitivity for diagnosis of COVID-19, but is not universally available, requires an infected or unstable patient to be moved to the radiology unit with potential exposure of several people, necessitates proper sanification of the CT room after use and is underutilized in children and pregnant women because of concerns over radiation exposure. The increasing frequency of confirmed COVID-19 cases is striking, and new sensitive diagnostic tools are needed to guide clinical practice. Lung ultrasound (LUS) is an emerging non-invasive bedside technique that is used to diagnose interstitial lung syndrome through evaluation and quantitation of the number of B-lines, pleural irregularities and nodules or consolidations. In patients with COVID-19 pneumonia, LUS reveals a typical pattern of diffuse interstitial lung syndrome, characterized by multiple or confluent bilateral B-lines with spared areas, thickening of the pleural line with pleural line irregularity and peripheral consolidations. LUS has been found to be a promising tool for the diagnosis of COVID-19 pneumonia, and LUS findings correlate fairly with those of chest CT scan. Compared with CT, LUS has several other advantages, such as lack of exposure to radiation, bedside repeatability during follow-up, low cost and easier application in low-resource settings. Consequently, LUS may decrease utilization of conventional diagnostic imaging resources (CT scan and chest X-ray). LUS may help in early diagnosis, therapeutic decisions and follow-up monitoring of COVID-19 pneumonia, particularly in the critical care setting and in pregnant women, children and patients in areas with high rates of community transmission.


Assuntos
Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Ultrassonografia/métodos , Betacoronavirus , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/diagnóstico , Humanos , Pandemias , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2 , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X
7.
Inorg Chem ; 59(13): 8727-8735, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32516538

RESUMO

The temperature behavior of the crystal structure as well as dielectric and magnetic properties of the perovskite bismuth chromate ceramics with the 10 mol % Cr3+-to-Sc3+ substitution were studied and compared with those of the unmodified compound. Using a high-pressure synthesis, BiCrO3 and BiCr0.9Sc0.1O3 were obtained as metastable perovskite phases which are monoclinic C2/c with the √6ap × âˆš2ap × âˆš6ap superstructure (where ap is the primitive perovskite unit-cell parameter) under ambient conditions. At room temperature, the unit cell volume of BiCr0.9Sc0.1O3 is ∼1.3% larger than that of BiCrO3. Both perovskites undergo a reversible structural transition into a nonpolar GdFeO3-type phase (orthorhombic Pnma, √2ap × 2ap × âˆš2ap) in the temperature ranges of 410-420 K (BiCrO3) and 470-520 K (BiCr0.9Sc0.1O3) with a relative jump of the primitive perovskite unit cell volume of about -1.6 and -2.0%, respectively. Temperature dependences of the complex dielectric permittivity demonstrate anomalies in the phase transition ranges. The Pnma-to-C2/c crossover in BiCrO3 is accompanied by a decrease in the direct current (dc) conductivity, while in BiCr0.9Sc0.1O3 the conductivity increases. The onset of an antiferromagnetic order in BiCr0.9Sc0.1O3 is observed at the Néel temperature (TN) of about 85 K as compared with TN = 110 K in BiCrO3. In contrast to BiCrO3, which exhibits a spin reorientation at Tsr ∼ 72 K, no such a transition occurs in BiCr0.9Sc0.1O3.

9.
Inorg Chem ; 58(20): 14204-14211, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31593448

RESUMO

By means of single-crystal X-ray diffraction, we give direct crystallographic evidence of a centrosymmetry breaking below TS = 200 K, concomitant with the onset of a commensurate structural modulation in the quadruple perovskite YMn3Mn4O12. This result, which explains the anomalously large thermal coefficient of the Y3+ ion in previously reported structural models, is attributed to the small size of the Y3+ ion, which causes its underbonding within the dodecahedral coordination polyhedron. The present data are consistent with a commensurate superstructure described by an I-centered pseudo-orthorhombic cell with polar Ia symmetry and a ≈ aF√2 = 10.4352(7) Å, b ≈ 2bF = 14.6049(9) Å, c ≈ cF√2 = 10.6961(7) Å, and ß = 90.110(3)°, where aF ≈ cF ≈ 7.45 Å, bF ≈ 7.34 Å, and ß ≈ 91° are the unit cell parameters of the I2/m structure observed at room temperature. Consistent with the above polar structure, at lower temperature, T* = 70 K, we observe in polycrystalline samples an anomaly of the direct current (DC) and alternating current (AC) magnetization, concomitant with the appearance of a net electric polarization, as indicated by pyrocurrent and dielectric constant measurements. These results, complemented by electrical transport measurements, suggest a magnetic ferroelectricity driven by short-range magnetic order in YMn3Mn4O12.

10.
J Phys Condens Matter ; 30(28): 285801, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29863483

RESUMO

We report a detailed study on the magnetic properties of the pyroxene series M2M1Si2O6, with M2 = Ca and M1 = Mg, where magnesium and then calcium are progressively substituted by cobalt. For cobalt site occupancy larger than 0.7 at the M1 site, a collinear antiferromagnetic phase is detected for T < T N1 = 12 K with a monodimensional character (i.e. M1 site intra-chain order parallel to c axis). Moreover the magnetization easy axis has been estimated to lie roughly along the [1 0 1] direction. Cobalt content ⩾0.5 at the M2 site (overall content 1.5) determines the formation of a new independent antiferromagnetic order with higher Néel temperature, involving only the M2 site intra-chain interactions. The incoming M2 site order is accompanied by a lowering of the space symmetry which yields to a weakly ferromagnetic resultant due to spin canted distribution of the magnetic moments either along the M1 or M2 chains. Furthermore, metamagnetic transitions are observed for both M1 and M2 site intra-chain orders at relatively low critical magnetic fields, around 2 T, suggesting that this series of pyroxenes can be used as a model system for investigating the fundamental aspects of magnetism in the matter.

11.
Inorg Chem ; 55(22): 12079-12084, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27934322

RESUMO

The crystal structure and ferroelectric properties of ε-Ga2O3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga2O3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga3+ sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P63mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga2O3 [10-10] direction being parallel to the Al2O3 direction [11-20], yielding a lattice mismatch of about 4.1%.

12.
Inorg Chem ; 55(12): 6308-14, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27247990

RESUMO

We present a comprehensive study of the electrical properties of bulk polycrystalline BiFe0.5Mn0.5O3, a double perovskite synthesized in high-pressure and high-temperature conditions. BiFe0.5Mn0.5O3 shows an antiferromagnetic character with TN = 288 K overlapped with an intrinsic antiferroelectricity due to the Bi(3+) stereochemical effect. Beyond this, the observation of a semiconductor-insulator transition at TP ≈ 140 K allows one to define three distinct temperature ranges with completely different electrical properties. For T > TN, electric transport follows an ordinary thermally activated Arrhenius behavior; the system behaves as a paramagnetic semiconductor. At intermediate temperatures (TP < T < TN), electric transport is best described by Mott's variable range hopping model with lowered dimensionality D = 1, stabilized by the magnetic ordering process and driven by the inhomogeneity of the sample on the B site of the perovskite. Finally, for T < TP, the material becomes a dielectric insulator, showing very unusual poling-induced soft ferroelectricity with high saturation polarization, similar to the parent compound BiFeO3. Under external electric poling, the system irreversibly evolves from antiferroelectric to polar arrangement.

13.
Inorg Chem ; 55(9): 4381-90, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27078522

RESUMO

The physical characterization and the extended crystallographic study of the double perovskite system Pb2Mn0.6Co0.4WO6 indicate an improper ferroelectric contribution to the polarization induced by the magnetic ordering. In the paramagnetic phase, the compound displays a centrosymmetric orthorhombic double perovskite structure with the Pmcn1' symmetry. The structure is strongly distorted by the lead stereoactivity. Magnetization measurements show two magnetic transitions at 188 and 9 K, but the time-of-flight neutron diffraction data provide evidence for a long-range magnetic ordering only below the second transition. Quantitative structure refinements combined with a comprehensive symmetry analysis indicate the Pm'c21' magnetic space group to be the adequate symmetry to describe the structural distortions and spin ordering in the ground state of the system. The symmetry implies a coexistence of a spontaneous ferromagnetic moment and a ferroelectric polarization along the orthogonal b- and c-axes, respectively, in the long-range ordered structure. Macroscopic measurements confirm the presence of the spontaneous polarization also below the first transition at 188 K, where only short-range magnetic correlations are evidenced by diffuse scattering in neutron diffraction.

14.
J Phys Condens Matter ; 27(28): 286002, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26125225

RESUMO

We report a comprehensive study of the spontaneous magnetization reversal (MRV) performed on the disordered polycrystalline perovskite BiFe(0.5)Mn(0.5)O(3), an intriguing compound synthesized in high pressure-high temperature conditions. In disordered systems, the origin of MRV is not completely clarified, yet. In BiFe(0.5)Mn(0.5)O(3), compositional disorder involves the ions on the B-site of the perovskite determining the presence of mesoscopic clusters, characterized by high concentrations of iron or manganese and thus by different resultant magnetization. This leads to the observation of two singular fields H(1) and H(2) dependent on the degree of inhomogeneity, unpredictably changing from sample to sample due to synthesis effects. These fields separate different magnetic responses of the system; for applied fields H < H(1), the Fe and Mn clusters weakly interact in a competitive way, giving rise to MRV, while for an intermediate field regime the energy of this weak interaction becomes comparable to the energy of the system under field application. As a consequence, the zero field cooled magnetization thermal evolution depends on the sample degree of inhomogeneity. In this field regime, applied field Mössbauer spectroscopy indicates that the iron rich clusters are highly polarized by the field, while the largest part of the material, consisting of AFM clusters characterized by axial anisotropy and uncompensated moments, shows soft or hard magnetism depending on T. Above the higher singular field, the M(T) curves show the trend expected for a classical antiferromagnetic material and the competitive character is suppressed. The MRV phenomenon results to be highly sensitive on both the thermal and magnetic measurement conditions; for this reason the present work proposes a characterization strategy that in principle has a large applicability in the study of disordered perovskites showing similar phenomenology.

15.
Inorg Chem ; 53(19): 10283-90, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25197959

RESUMO

In this paper we describe the new ferri-electric compound Pb2MnWO6 (PMW), a double perovskite that can be considered as a novel structural prototype showing complex nuclear structure and interesting electric properties. According to single-crystal synchrotron data, PMW crystallizes in the noncentrosymmetric polar group Pmc21, in which the two symmetry-independent lead atoms give rise to a ferrielectric arrangement. The accurate crystallographic characterization indicates the presence of a complex distortion of the perovskite lattice driven by the local instability induced by the 6s(2) lone pair of the lead atoms. These peculiar structural features are confirmed by the complete electrical characterization of the system. Dielectric and transport measurements indicate an insulating character of the sample, while pyroelectric measurements point out a ferrielectric state characterized by different contributions. The magnetic transition at 45 K is accompanied by a magnetostrictive effect indicating a probable spin-lattice coupling. The characterizations carried out on PMW, showing the evidence of a coexistence of antiferromagnetism and ferrielectricity at low temperature, could lead to the definition of a new class of multiferroic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...