Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0278584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36472994

RESUMO

Carbonyl sulfide (COS) fluxes simulated by vegetation and soil component models, both implemented in the ORCHIDEE land surface model, were evaluated against field observations at two agroecosystems in central France. The dynamics of a biogenic process not yet accounted for by this model, i.e., COS emissions from croplands, was examined in the context of three independent and complementary approaches. First, during the growing seasons of 2019 and 2020, monthly variations in the nighttime ratio of vertical mole fraction gradients of COS and carbon dioxide measured between 5 and 180 m height (GradCOS/GradCO2), a proxy of the ratio of their respective nocturnal net fluxes, were monitored at a rural tall tower site near Orléans (i.e., a "profile vs. model" approach). Second, field observations of COS nocturnal fluxes, obtained by the Radon Tracer Method (RTM) at a sub-urban site near Paris, were used for that same purpose (i.e., a "RTM vs. model" approach of unaccounted biogenic emissions). This site has observations going back to 2014. Third, during the growing seasons of 2019, 2020 and 2021, horizontal mole fraction gradients of COS were calculated from downwind-upwind surveys of wheat and rapeseed crops as a proxy of their respective exchange rates at the plot scale (i.e., a "crop based" comparative approach). The "profile vs. model" approach suggests that the nocturnal net COS uptake gradually weakens during the peak growing season and recovers from August on. The "RTM vs. model" approach suggests that there exists a biogenic source of COS, the intensity of which culminates in late June early July. Our "crop based" comparative approach demonstrates that rapeseed crops shift from COS uptake to emission in early summer during the late stages of growth (ripening and senescence) while wheat crops uptake capacities lower markedly. Hence, rapeseed appears to be a much larger source of COS than wheat at the plot scale. Nevertheless, compared to current estimates of the largest COS sources (i.e., marine and anthropogenic emissions), agricultural emissions during the late stages of growth are of secondary importance.


Assuntos
Poluição Ambiental , França , Paris
2.
Sci Total Environ ; 716: 136844, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32059316

RESUMO

Carbon dioxide (CO2) concentration (CDC) is an essential parameter of underground atmospheres for safety and cave heritage preservation. In the Chauvet cave (South France), a world heritage site hosting unique paintings dated 36,000 years BP, a high-sensitivity monitoring, ongoing since 1997, revealed: 1) two compartments with a spatially uniform CDC, a large volume (A) (40,000 to 80,000 m3) with a mean value of 2.20 ± 0.01% vol. in 2016, and a smaller remote room (B) (2000 m3), with a higher mean value of 3.42 ± 0.01%; 2) large CDC annual variations with peak-to-peak amplitude of 2% and 1.6% in A and B, respectively; 3) long-term changes, with an increase of CDC and of its annual amplitude since 1997, then faster since 2013, reaching a maximum of 4.4% in B in 2017, decreasing afterwards. While a large effect of seasonal ventilation is ruled out, monitoring of seepage at two dripping points indicated that the main control of CDC seasonal reduction was transient infiltration. During periods of water deficit, calculated from surface temperature and rainfall, CDC systematically increased. The carbon isotopic composition of CO2, correlated with water excess, is consistent with a time-varying component of CO2 seeping from above. The CO2 flux, which is the primary driver of CDC in A and B, inferred using box modelling, was found to confirm the relationship between water excess and reduced CO2 flux into A, compatible with a more constant flux into B. A buoyancy-driven horizontal CO2 flow model in the vadose zone, hindered by water infiltration, is proposed. Similarly, pluri-annual and long-term CDC changes can likely be attributed to variations of water excess, but also to increasing vegetation density above the cave. As CDC controls the carbonate geochemistry, an increased variability of CDC raises concern for the preservation of the Chauvet cave paintings.

3.
PLoS One ; 15(2): e0228419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32040521

RESUMO

Carbonyl sulfide (COS) has been proposed as a proxy for carbon dioxide (CO2) taken up by plants at the leaf and ecosystem scales. However, several additional production and removal processes have been identified which could complicate its use at larger scales, among which are soil uptake, dark uptake by plants, and soil and anthropogenic emissions. This study evaluates the significance of these processes at the regional scale through a top-down approach based on atmospheric COS measurements at Gif-sur-Yvette (GIF), a suburban site near Paris (France). Over a period of four and a half years, hourly measurements at 7 m above ground level were performed by gas chromatography and combined with 222Radon measurements to calculate nocturnal COS fluxes using the Radon-Tracer Method. In addition, the vertical distribution of COS was investigated at a second site, 2 km away from GIF, where a fast gas analyzer deployed on a 100 m tower for several months during winter 2015-2016 recorded mixing ratios at 3 heights (15, 60 and 100 m). COS appears to be homogeneously distributed both horizontally and vertically in the sampling area. The main finding is that the area is a persistent COS sink even during wintertime episodes of strong pollution. Nighttime net uptake rates ranged from -1.5 to -32.8 pmol m-2 s-1, with an average of -7.3 ± 4.5 pmol m-2 s-1 (n = 253). However, episodes of biogenic emissions happened each year in June-July (11.9 ± 6.2 pmol m-2 s-1, n = 24). Preliminary analyses of simulated footprints of source areas influencing the recorded COS data suggest that long-range transport of COS from anthropogenic sources located in Benelux, Eastern France and Germany occasionally impacts the Paris area during wintertime. These production and removal processes may limit the use of COS to assess regional-scale CO2 uptake in Europe by plants through inverse modeling.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Ecossistema , Folhas de Planta/metabolismo , Solo/química , Óxidos de Enxofre/análise , Paris , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano
4.
Sci Total Environ ; 711: 135055, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31810669

RESUMO

Wood burning is widely used for domestic heating and has been identified as a ubiquitous pollution source in urban areas, especially during cold months. The present study is based on a three and a half winter months field campaign in the Paris region measuring Volatile Organic Compounds (VOCs) by Proton Transfer Reaction Mass Spectrometry (PTR-MS) in addition to Black Carbon (BC). Several VOCs were identified as strongly wood burning-influenced (e.g., acetic acid, furfural), or traffic-influenced (e.g., toluene, C8-aromatics). Methylbutenone, benzenediol and butandione were identified for the first time as wood burning-related in ambient air. A Positive Matrix Factorization (PMF) analysis highlighted that wood burning is the most important source of VOCs during the winter season. (47%). Traffic was found to account for about 22% of the measured VOCs during the same period, whereas solvent use plus background accounted altogether for the remaining fraction. The comparison with the regional emission inventory showed good consistency for benzene and xylenes but revisions of the inventory should be considered for several VOCs such as acetic acid, C9-aromatics and methanol. Finally, complementary measurements acquired simultaneously at other sites in Île-de-France (the Paris region) enabled evaluation of spatial variabilities. The influence of traffic emissions on investigated pollutants displayed a clear negative gradient from roadside to suburban stations, whereas wood burning pollution was found to be fairly homogeneous over the region.

5.
Rev Sci Instrum ; 79(4): 043101, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18447517

RESUMO

We have developed a tunable diode laser spectrometer, called SIMCO (spectrometer for isotopic measurements of CO(2)), for determining the concentrations of (12)CO(2) and (13)CO(2) in atmospheric air, from which the total concentration of CO(2) and the isotopic composition (expressed in delta units) delta(13)CO(2) are calculated. The two concentrations are measured using a pair of lines around 2290.1 cm(-1), by fitting a line profile model, taking into account the confinement narrowing effect to achieve a better accuracy. Using the Allan variance, we have demonstrated (for an integration time of 25 s) a precision of 0.1 ppmv for the total CO(2) concentration and of 0.3[per thousand] for delta(13)CO(2). The performances on atmospheric air have been tested during a 3 days campaign by comparing the SIMCO instrument with a gas chromatograph (GC) for the measurement of the total CO(2) concentration and with an isotopic ratio mass spectrometer (MS) for the isotopic composition. The CO(2) concentration measurements of SIMCO are in very good agreement with the GC data with a mean difference of Delta(CO(2))=0.16+/-1.20 ppmv for a comparison period of 45 h and the linearity of the concentration between the two instruments is also very good (slope of correlation: 0.9996+/-0.0003) over the range between 380 and 415 ppmv. For delta(13)CO(2), the comparison with the MS data shows a larger mean difference of Delta(delta(13)CO(2))=(-1.9+/-1.2)[per thousand], which could be partly related to small residual fluctuations of the overall SIMCO instrument response.

6.
Science ; 297(5588): 1862-4, 2002 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-12228715

RESUMO

The last deglaciation was marked by large, hemispheric, millennial-scale climate variations: the Bølling-Allerød and Younger Dryas periods in the north, and the Antarctic Cold Reversal in the south. A chronology from the high-accumulation Law Dome East Antarctic ice core constrains the relative timing of these two events and provides strong evidence that the cooling at the start of the Antarctic Cold Reversal did not follow the abrupt warming during the northern Bølling transition around 14,500 years ago. This result suggests that southern changes are not a direct response to abrupt changes in North Atlantic thermohaline circulation, as is assumed in the conventional picture of a hemispheric temperature seesaw.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...