Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3779, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145254

RESUMO

Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization offered by this class of materials. However, accurate control of both the spatial location and the emission wavelength of the quantum emitters is essentially lacking to date, thus hindering further technological steps towards scalable quantum photonic devices. Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations. SPE ensembles are generated with a spatial accuracy better than the cubed emission wavelength, thus opening the way to integration in optical microstructures. Stable and bright single photon emission is subsequently observed in the visible range up to room temperature upon non-resonant laser excitation. Moreover, the low-temperature emission wavelength is reproducible, with an ensemble distribution of width 3 meV, a statistical dispersion that is more than one order of magnitude lower than the narrowest wavelength spreads obtained in epitaxial hBN samples. Our findings constitute an essential step towards the realization of top-down integrated devices based on identical quantum emitters in 2D materials.

2.
Opt Lett ; 44(15): 3877-3880, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368991

RESUMO

The second-order correlation function of light g(2)(τ) constitutes a pivotal tool to quantify the quantum behavior of an emitter and in turn its potential for quantum information applications. The experimentally accessible time resolution of g(2)(τ) is usually limited by the jitter of available single-photon detectors. Here, we present a versatile technique allowing g(2)(τ) to be measured from a large variety of light signals with a time resolution given by the pulse length of a mode-locked laser. The technique is based on frequency upconversion in a nonlinear waveguide, and we analyze its properties and limitations by modeling the pulse propagation and the frequency conversion process. We measure g(2)(τ) from various signals including light from a quantum emitter-a confined exciton-polariton structure-revealing its quantum signatures at a scale of a few picoseconds and demonstrating the capability of the technique.

3.
Nat Mater ; 18(3): 219-222, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30783230

RESUMO

Cavity-polaritons in semiconductor microstructures have emerged as a promising system for exploring non-equilibrium dynamics of many-body systems1. Key advances in this field, including the observation of polariton condensation2, superfluidity3, realization of topological photonic bands4, and dissipative phase transitions5-7, generically allow for a description based on a mean-field Gross-Pitaevskii formalism. Observation of polariton intensity squeezing8,9 and decoherence of a polarization entangled photon pair by a polariton condensate10, on the other hand, demonstrate quantum effects that show up at high polariton occupancy. Going beyond and into the regime of strongly correlated polaritons requires the observation of a photon blockade effect11,12 where interactions are strong enough to suppress double occupancy of a photonic lattice site. Here, we report evidence of quantum correlations between polaritons spatially confined in a fibre cavity. Photon correlation measurements show that careful tuning of the coupled system can lead to a modest reduction of simultaneous two-polariton generation probability by 5%. Concurrently, our experiments allow us to measure the polariton interaction strength, thereby resolving the controversy stemming from recent experimental reports13. Our findings constitute an essential step towards the realization of strongly interacting photonic systems.

4.
Phys Rev Lett ; 118(17): 177401, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498703

RESUMO

Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.

5.
Phys Rev Lett ; 112(11): 116802, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702401

RESUMO

Single-shot readout of individual qubits is typically the slowest process among the elementary single- and two-qubit operations required for quantum information processing. Here, we use resonance fluorescence from a single-electron charged quantum dot to read out the spin-qubit state in 800 nanoseconds with a fidelity exceeding 80%. Observation of the spin evolution on longer time scales reveals quantum jumps of the spin state: we use the experimentally determined waiting-time distribution to characterize the quantum jumps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...