Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Bank ; 24(3): 597-612, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36526819

RESUMO

Several ongoing investigations have been founded on the development of an optimized therapeutic strategy for the COVID-19 virus as an undeniable acute challenge for human life. Cell-based therapy and particularly, mesenchymal stem cells (MSCs) therapy has obtained desired outcomes in decreasing the mortality rate of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), mainly owing to its immunoregulatory impact that prevents the overactivation of the immune system. Also, these cells with their multipotent nature, are capable of repairing the damaged tissue of the lung which leads to reducing the probability of acute respiratory distress syndrome (ARDS). Although this cell-based method is not quite cost-effective for developing countries, regarding its promising results in order to treat SARS-COV-2, more economical evaluation as well as clinical trials should be performed for improving this therapeutic approach. Here in this article, the functional mechanism of MSCs therapy for the treatment of COVID-19 and the clinical trials based on this method will be reviewed. Moreover, its economic efficiency will be discussed.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , COVID-19/terapia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Transplante de Células-Tronco Mesenquimais/métodos
2.
Macromol Biosci ; 22(1): e2100313, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644007

RESUMO

The main challenge in treating injuries is excessive bleeding whereas intervention is required if the body's hemostatic systems fail to control the bleeding. Herein, a novel nanocomposite consisting of poly(lactic acid) (PLA) and poly(amidoamine) (PAMAM) dendrimer functionalized halloysite nanotube (HNT) with a highly porous structure via electrospinning is developed. HNT is functionalized by PAMAM via divergent synthetic routes from zero to third-generation numbers. The effect of different percentages and generation numbers of PAMAM dendrimer (G1, G2, and G3) functionalized HNT on PLA is studied using physicochemical nanocomposite characteristics. These resultant nanocomposites provide a nanofibrous structure with appropriate physicochemical characteristics such as mechanical properties, surface wettability, and water permeability. The hemostatic assays indicate that nanocomposite with PAMAM G3 functionalized HNT have the quickest blood clotting time due to the abundant amino functional group. Furthermore, the nanocomposites with 10 wt% of nanoparticles significantly promote cellular behavior in vitro. The in vivo study demonstrates that PLA/PAMAM G3 functionalized HNT promotes angiogenesis, collagen deposition, and re-epithelialization in the wound sites of the rat model, as well as inhibiting inflammatory response. The findings indicate that nanofibrous structure and the presence of dendrimer functionalized HNT have a synergetic effect on the enhanced nanocomposite wound healing performance.


Assuntos
Dendrímeros , Hemostáticos , Nanocompostos , Nanotubos , Animais , Argila , Dendrímeros/química , Dendrímeros/farmacologia , Poliaminas , Poliésteres/química , Poliésteres/farmacologia , Ratos , Cicatrização
3.
Eur J Med Chem ; 221: 113572, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34087497

RESUMO

It is often challenging to design diagnostic and therapeutic agents that fulfill all functional requirements. So, bulk and surface modifications as a common approach for biomedical applications have been suggested. There have been considerable research interests in using nanomaterials to the prementioned methods. Among all nanomaterials, dendritic materials with three-dimensional structures, host-guest properties, and nano-polymeric dimensions have received considerable attention. Amine-terminated dendritic structures including, polyamidoamine (PAMAM), polypropyleneimine (PPI), and polyethyleneimine (PEI), have been enormously utilized in bio-modification. This review briefly described the structure of these three common dendritic polymers and their use to modify diagnostic and therapeutic agents in six major applications, including drug delivery, gene delivery, biosensor, bioimaging, tissue engineering, and antimicrobial activity. The current review covers amine-terminated dendritic polymers toxicity challenging and improvement strategies as well.


Assuntos
Aminas/química , Técnicas Biossensoriais , Dendrímeros/química , Terapia Genética , Nanoestruturas/química , Polímeros/química , Sistemas de Liberação de Medicamentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA