Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918833

RESUMO

Plants must balance light capture for photosynthesis with protection from potentially harmful ultraviolet radiation (UV). Photoprotection is mediated by concerted action of photoreceptors, but the underlying molecular mechanisms are not fully understood. In this study, we provide evidence that UV RESISTANCE LOCUS 8 (UVR8) UV-B-, phytochrome red-, and cryptochrome blue-light photoreceptors converge on the induction of FERULIC ACID 5-HYDROXYLASE 1 (FAH1) that encodes a key enzyme in the phenylpropanoid biosynthesis pathway, leading to the accumulation of UV-absorbing sinapate esters in Arabidopsis (Arabidopsis thaliana). FAH1 induction depends on the bZIP transcription factors ELONGATED HYPOCOTYL 5 (HY5) and HY5-HOMOLOG (HYH) that function downstream of all three photoreceptors. Noticeably, mutants with hyperactive UVR8 signaling rescue fah1 UV sensitivity. Targeted metabolite profiling suggests that this phenotypic rescue is due to the accumulation of UV-absorbing metabolites derived from precursors of sinapate synthesis, namely coumaroyl-glucose and feruloyl-glucose. Our genetic dissection of the phenylpropanoid pathway combined with metabolomic and physiological analyses show that both sinapate esters and flavonoids contribute to photoprotection with sinapates playing a major role for UV screening. Our findings indicate that photoreceptor-mediated regulation of FAH1 and subsequent accumulation of sinapate "sunscreen" compounds is a key protective mechanism to mitigate damage, preserving photosynthetic performance, and ensuring plant survival under UV.

2.
Plant Physiol ; 194(3): 1563-1576, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37956407

RESUMO

Photoperiodic plants coordinate the timing of flowering with seasonal light cues, thereby optimizing their sexual reproductive success. The WD40-repeat protein REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) functions as a potent repressor of UV RESISTANCE LOCUS 8 (UVR8) photoreceptor-mediated UV-B induction of flowering under noninductive, short-day conditions in Arabidopsis (Arabidopsis thaliana); however, in contrast, the closely related RUP1 seems to play no major role. Here, analysis of chimeric ProRUP1:RUP2 and ProRUP2:RUP1 expression lines suggested that the distinct functions of RUP1 and RUP2 in repressing flowering are due to differences in both their coding and regulatory DNA sequences. Artificial altered expression using tissue-specific promoters indicated that RUP2 functions in repressing flowering when expressed in mesophyll and phloem companion cells, whereas RUP1 functions only when expressed in phloem companion cells. Endogenous RUP1 expression in vascular tissue was quantified as lower than that of RUP2, likely underlying the functional difference between RUP1 and RUP2 in repressing flowering. Taken together, our findings highlight the importance of phloem vasculature expression of RUP2 in repressing flowering under short days and identify a basis for the functional divergence of Arabidopsis RUP1 and RUP2 in regulating flowering time.


Assuntos
Arabidopsis , Arabidopsis/genética , Reprodução , Sinais (Psicologia) , Floema/genética , Regiões Promotoras Genéticas/genética
4.
Elife ; 102021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33629953

RESUMO

Light triggers chloroplast differentiation whereby the etioplast transforms into a photosynthesizing chloroplast and the thylakoid rapidly emerges. However, the sequence of events during chloroplast differentiation remains poorly understood. Using Serial Block Face Scanning Electron Microscopy (SBF-SEM), we generated a series of chloroplast 3D reconstructions during differentiation, revealing chloroplast number and volume and the extent of envelope and thylakoid membrane surfaces. Furthermore, we used quantitative lipid and whole proteome data to complement the (ultra)structural data, providing a time-resolved, multi-dimensional description of chloroplast differentiation. This showed two distinct phases of chloroplast biogenesis: an initial photosynthesis-enabling 'Structure Establishment Phase' followed by a 'Chloroplast Proliferation Phase' during cell expansion. Moreover, these data detail thylakoid membrane expansion during de-etiolation at the seedling level and the relative contribution and differential regulation of proteins and lipids at each developmental stage. Altogether, we establish a roadmap for chloroplast differentiation, a critical process for plant photoautotrophic growth and survival.


Assuntos
Arabidopsis/fisiologia , Cloroplastos/fisiologia , Estiolamento , Biogênese de Organelas
5.
Annu Rev Plant Biol ; 72: 793-822, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33636992

RESUMO

Ultraviolet-B (UV-B) radiation is an intrinsic fraction of sunlight that plants perceive through the UVR8 photoreceptor. UVR8 is a homodimer in its ground state that monomerizes upon UV-B photon absorption via distinct tryptophan residues. Monomeric UVR8 competitively binds to the substrate binding site of COP1, thus inhibiting its E3 ubiquitin ligase activity against target proteins, which include transcriptional regulators such as HY5. The UVR8-COP1 interaction also leads to the destabilization of PIF bHLH factor family members. Additionally, UVR8 directly interacts with and inhibits the DNA binding of a different set of transcription factors. Each of these UVR8 signaling mechanisms initiates nuclear gene expression changes leading to UV-B-induced photomorphogenesis and acclimation. The two WD40-repeat proteins RUP1 and RUP2 provide negative feedback regulation and inactivate UVR8 by facilitating redimerization. Here, we review the molecular mechanisms of the UVR8 pathway from UV-B perception and signal transduction to gene expression changes and physiological UV-B responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica de Plantas , Percepção , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Raios Ultravioleta
6.
Nat Commun ; 9(1): 2403, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921904

RESUMO

Phototropins are light-activated protein kinases, which contribute to photosynthesis optimization both through enhancement of photon absorption when light is limiting and avoidance responses in high light. This duality is in part endowed by the presence of phototropins with different photosensitivity (phot1 and phot2). Here we show that phot1, which senses low light to promote positive phototropism (growth towards the light), also limits the response in high light. This response depends in part on phot1-mediated phosphorylation of Phytochrome Kinase Substrate 4 (PKS4). This light-regulated phosphorylation switch changes PKS4 from a phototropism enhancer in low light to a factor limiting the process in high light. In such conditions phot1 and PKS4 phosphorylation prevent phototropic responses to shallow light gradients and limit phototropism in a natural high light environment. Hence, by modifying PKS4 activity in high light the phot1-PKS4 regulon enables appropriate physiological adaptations over a range of light intensities.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Fosfoproteínas/metabolismo , Fototropismo/efeitos da radiação , Adaptação Fisiológica/genética , Adaptação Fisiológica/efeitos da radiação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/genética , Fosforilação/efeitos da radiação , Fototropismo/genética , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases
7.
Plant Cell ; 30(8): 1745-1769, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29934433

RESUMO

Malate dehydrogenases (MDHs) convert malate to oxaloacetate using NAD(H) or NADP(H) as a cofactor. Arabidopsis thaliana mutants lacking plastidial NAD-dependent MDH (pdnad-mdh) are embryo-lethal, and constitutive silencing (miR-mdh-1) causes a pale, dwarfed phenotype. The reason for these severe phenotypes is unknown. Here, we rescued the embryo lethality of pdnad-mdh via embryo-specific expression of pdNAD-MDH. Rescued seedlings developed white leaves with aberrant chloroplasts and failed to reproduce. Inducible silencing of pdNAD-MDH at the rosette stage also resulted in white newly emerging leaves. These data suggest that pdNAD-MDH is important for early plastid development, which is consistent with the reductions in major plastidial galactolipid, carotenoid, and protochlorophyllide levels in miR-mdh-1 seedlings. Surprisingly, the targeting of other NAD-dependent MDH isoforms to the plastid did not complement the embryo lethality of pdnad-mdh, while expression of enzymatically inactive pdNAD-MDH did. These complemented plants grew indistinguishably from the wild type. Both active and inactive forms of pdNAD-MDH interact with a heteromeric AAA-ATPase complex at the inner membrane of the chloroplast envelope. Silencing the expression of FtsH12, a key member of this complex, resulted in a phenotype that strongly resembles miR-mdh-1. We propose that pdNAD-MDH is essential for chloroplast development due to its moonlighting role in stabilizing FtsH12, distinct from its enzymatic function.


Assuntos
Cloroplastos/metabolismo , Malato Desidrogenase/metabolismo , Carotenoides/metabolismo , Cloroplastos/genética , Galactolipídeos/metabolismo , Inativação Gênica/fisiologia , Malato Desidrogenase/genética , Protoclorifilida/metabolismo
8.
Trends Plant Sci ; 23(3): 260-271, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29233601

RESUMO

Plants grow in constantly changing environments, including highly variable light intensities. Sunlight provides the energy that drives photosynthesis and is thus of the utmost importance for plant growth and the generation of oxygen, which the majority of life on Earth depends on. However, exposure to either insufficient or excess levels of light can have detrimental effects and cause light stress. Whereas exposure to insufficient light limits photosynthetic activity, resulting in 'energy starvation', exposure to excess light can damage the photosynthetic apparatus. Furthermore, strong sunlight is associated with high levels of potentially damaging UV-B radiation. Different classes of photoreceptors play important roles in coping with the negative aspects of sunlight, for which specific mechanisms are emerging that are reviewed here.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Luz Solar , Transdução de Sinais/fisiologia
9.
J Biol Chem ; 292(17): 6952-6964, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28283569

RESUMO

The biogenesis and maintenance of cell organelles such as mitochondria and chloroplasts require the import of many proteins from the cytosol, a process that is controlled by phosphorylation. In the case of chloroplasts, the import of hundreds of different proteins depends on translocons at the outer and inner chloroplast membrane (TOC and TIC, respectively) complexes. The essential protein TOC159 functions thereby as an import receptor. It has an N-terminal acidic (A-) domain that extends into the cytosol, controls receptor specificity, and is highly phosphorylated in vivo However, kinases that phosphorylate the TOC159 A-domain to enable protein import have remained elusive. Here, using co-purification with TOC159 from Arabidopsis, we discovered a novel component of the chloroplast import machinery, the regulatory kinase at the outer chloroplast membrane 1 (KOC1). We found that KOC1 is an integral membrane protein facing the cytosol and stably associates with TOC. Moreover, KOC1 phosphorylated the A-domain of TOC159 in vitro, and in mutant koc1 chloroplasts, preprotein import efficiency was diminished. koc1 Arabidopsis seedlings had reduced survival rates after transfer from the dark to the light in which protein import into plastids is required to rapidly complete chloroplast biogenesis. In summary, our data indicate that KOC1 is a functional component of the TOC machinery that phosphorylates import receptors, supports preprotein import, and contributes to efficient chloroplast biogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas de Cloroplastos/fisiologia , Cromatografia de Afinidade , Citosol/metabolismo , Escherichia coli/metabolismo , Espectrometria de Massas , Mutação , Fosforilação , Domínios Proteicos , Transporte Proteico , Proteínas Recombinantes/metabolismo
10.
Front Plant Sci ; 5: 483, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25278954

RESUMO

Plants have evolved complex and sophisticated molecular mechanisms to regulate their development and adapt to their surrounding environment. Particularly the development of their specific organelles, chloroplasts and other plastid-types, is finely tuned in accordance with the metabolic needs of the cell. The normal development and functioning of plastids require import of particular subsets of nuclear encoded proteins. Most preproteins contain a cleavable sequence at their N terminal (transit peptide) serving as a signal for targeting to the organelle and recognition by the translocation machinery TOC-TIC (translocon of outer membrane complex-translocon of inner membrane complex) spanning the dual membrane envelope. The plastid proteome needs constant remodeling in response to developmental and environmental factors. Therefore selective regulation of preprotein import plays a crucial role in plant development. In this review we describe the diversity of transit peptides and TOC receptor complexes, and summarize the current knowledge and potential directions for future research concerning regulation of the different Toc isoforms.

11.
Mol Syst Biol ; 10: 751, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25261457

RESUMO

Phototropism is a growth response allowing plants to align their photosynthetic organs toward incoming light and thereby to optimize photosynthetic activity. Formation of a lateral gradient of the phytohormone auxin is a key step to trigger asymmetric growth of the shoot leading to phototropic reorientation. To identify important regulators of auxin gradient formation, we developed an auxin flux model that enabled us to test in silico the impact of different morphological and biophysical parameters on gradient formation, including the contribution of the extracellular space (cell wall) or apoplast. Our model indicates that cell size, cell distributions, and apoplast thickness are all important factors affecting gradient formation. Among all tested variables, regulation of apoplastic pH was the most important to enable the formation of a lateral auxin gradient. To test this prediction, we interfered with the activity of plasma membrane H⁺ -ATPases that are required to control apoplastic pH. Our results show that H⁺ -ATPases are indeed important for the establishment of a lateral auxin gradient and phototropism. Moreover, we show that during phototropism, H⁺ -ATPase activity is regulated by the phototropin photoreceptors, providing a mechanism by which light influences apoplastic pH.


Assuntos
Adenosina Trifosfatases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/enzimologia , Ácidos Indolacéticos/metabolismo , Fototropismo , Adenosina Trifosfatases/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Microscopia Confocal , Modelos Teóricos , Fosforilação , Fotossíntese , Fototropinas/genética , Fototropinas/metabolismo , Fitocromo , Reguladores de Crescimento de Plantas
12.
Plant Cell ; 25(5): 1674-88, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23709629

RESUMO

Phototropic hypocotyl bending in response to blue light excitation is an important adaptive process that helps plants to optimize their exposure to light. In Arabidopsis thaliana, phototropic hypocotyl bending is initiated by the blue light receptors and protein kinases phototropin1 (phot1) and phot2. Phototropic responses also require auxin transport and were shown to be partially compromised in mutants of the PIN-FORMED (PIN) auxin efflux facilitators. We previously described the D6 PROTEIN KINASE (D6PK) subfamily of AGCVIII kinases, which we proposed to directly regulate PIN-mediated auxin transport. Here, we show that phototropic hypocotyl bending is strongly dependent on the activity of D6PKs and the PIN proteins PIN3, PIN4, and PIN7. While early blue light and phot-dependent signaling events are not affected by the loss of D6PKs, we detect a gradual loss of PIN3 phosphorylation in d6pk mutants of increasing complexity that is most severe in the d6pk d6pkl1 d6pkl2 d6pkl3 quadruple mutant. This is accompanied by a reduction of basipetal auxin transport in the hypocotyls of d6pk as well as in pin mutants. Based on our data, we propose that D6PK-dependent PIN regulation promotes auxin transport and that auxin transport in the hypocotyl is a prerequisite for phot1-dependent hypocotyl bending.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/efeitos da radiação , Hipocótilo/genética , Hipocótilo/fisiologia , Immunoblotting , Luz , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Confocal , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação/efeitos da radiação , Fototropismo/genética , Fototropismo/fisiologia , Fototropismo/efeitos da radiação , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
EMBO J ; 31(16): 3457-67, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22781128

RESUMO

Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Fosforilação , Processos Fototróficos , Proteínas Serina-Treonina Quinases , Transdução de Sinais
14.
Nat Cell Biol ; 13(4): 447-52, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21394084

RESUMO

Phototropism is an adaptation response, through which plants grow towards the light. It involves light perception and asymmetric distribution of the plant hormone auxin. Here we identify a crucial part of the mechanism for phototropism, revealing how light perception initiates auxin redistribution that leads to directional growth. We show that light polarizes the cellular localization of the auxin efflux carrier PIN3 in hypocotyl endodermis cells, resulting in changes in auxin distribution and differential growth. In the dark, high expression and activity of the PINOID (PID) kinase correlates with apolar targeting of PIN3 to all cell sides. Following illumination, light represses PINOID transcription and PIN3 is polarized specifically to the inner cell sides by GNOM ARF GTPase GEF (guanine nucleotide exchange factor)-dependent trafficking. Thus, differential trafficking at the shaded and illuminated hypocotyl side aligns PIN3 polarity with the light direction, and presumably redirects auxin flow towards the shaded side, where auxin promotes growth, causing hypocotyls to bend towards the light. Our results imply that PID phosphorylation-dependent recruitment of PIN proteins into distinct trafficking pathways is a mechanism to polarize auxin fluxes in response to different environmental and endogenous cues.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Luz , Fototropismo/fisiologia , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Polaridade Celular , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
15.
Curr Opin Plant Biol ; 12(1): 69-74, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18930433

RESUMO

Higher plants use several classes of blue light receptors to modulate a wide variety of physiological responses. Among them, both the phototropins and members of the Zeitlupe (ZTL) family use light oxygen voltage (LOV) photosensory domains. In Arabidopsis, these families comprise phot1, phot2 and ZTL, LOV Kelch Protein 2 (LKP2), and Flavin-binding Kelch F-box1 (FKF1). It has now been convincingly shown that blue-light-induced autophosphorylation of the phot1 kinase domain is an essential step in signal transduction. Recent experiments also shed light on the partially distinct photosensory specificities of phot1 and phot2. Phototropin signaling branches rapidly following photoreceptor activation to mediate distinct responses such as chloroplast movements or phototropism. Light activation of the LOV domain in ZTL family members modulates their capacity to interact with GIGANTEA (GI) and their ubiquitin E3 ligase activity. A complex between GI and FKF1 is required to trigger the degradation of a repressor of CO (CONSTANS) expression and thus modulates flowering time. In contrast, light-regulated complex formation between ZTL and GI appears to limit the capacity of ZTL to degrade its targets, which are part of the circadian oscillator.


Assuntos
Luz , Oxigênio/metabolismo , Plantas/metabolismo , Plantas/efeitos da radiação , Criptocromos , Flavoproteínas/química , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos da radiação
16.
Proc Natl Acad Sci U S A ; 105(26): 9123-8, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18567673

RESUMO

The plastid genome of dicotyledonous plants is transcribed by three different RNA polymerases; an eubacterial-type enzyme, PEP; and two phage-type enzymes, RPOTp and RPOTmp. RPOTp plays an important role in chloroplast transcription, biogenesis, and mesophyll cell proliferation. RPOTmp fulfills a specific function in the transcription of the rrn operon in proplasts/amyloplasts during seed imbibition/germination and a more general function in chloroplasts during later developmental stages. In chloroplasts, RPOTmp is tightly associated with thylakoid membranes indicating that functional switching of RPOTmp is connected to thylakoid association. By using the yeast two-hybrid system, we have identified two proteins that interact with RPOTmp. The two proteins are very similar, both characterized by three N-terminal transmembrane domains and a C-terminal RING domain. We show that at least one of these proteins is an intrinsic thylakoid membrane protein that fixes RPOTmp on the stromal side of the thylakoid membrane, probably via the RING domain. A model is presented in which light by triggering the synthesis of the RING protein determines membrane association and functional switching of RPOTmp.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Bacteriófagos/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , Tilacoides/enzimologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Ligação a DNA , RNA Polimerases Dirigidas por DNA/química , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Biblioteca Gênica , Membranas Intracelulares/metabolismo , Membranas Intracelulares/efeitos da radiação , Luz , Dados de Sequência Molecular , Especificidade de Órgãos/efeitos da radiação , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos da radiação , Transporte Proteico/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tilacoides/efeitos da radiação , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
17.
Plant Physiol ; 145(3): 712-21, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17885088

RESUMO

The plastid genome of higher plants is transcribed by two different types of RNA polymerases named nucleus encoded RNA polymerase (NEP) and plastid encoded RNA polymerase. Plastid encoded RNA polymerase is a multimeric enzyme comparable to eubacterial RNA polymerases. NEP enzymes represent a small family of monomeric phage-type RNA polymerases. Dicotyledonous plants harbor three different phage-type enzymes, named RPOTm, RPOTp, and RPOTmp. RPOTm is exclusively targeted to mitochondria, RPOTp is exclusively targeted to plastids, and RPOTmp is targeted to plastids as well as to mitochondria. In this article, we have made use of RPOTp and RPOTmp T-DNA insertion mutants to answer the question of whether both plastid-located phage-type RNA polymerases have overlapping or specific functions in plastid transcription. To this aim, we have analyzed accD and rpoB messenger RNAs (mRNA; transcribed from type I NEP promoters), clpP mRNA (transcribed from the -59 type II NEP promoter), and the 16S rRNA (transcribed from the exceptional PC NEP promoter) by primer extension. Results suggest that RPOTp represents the principal RNA polymerase for transcribing NEP-controlled mRNA genes during early plant development, while RPOTmp transcribes specifically the rrn operon from the PC promoter during seed imbibition.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Óperon/genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica , Arabidopsis/enzimologia , Bacteriófagos/enzimologia , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Mutagênese Insercional
18.
Plant Physiol ; 142(3): 993-1003, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16963522

RESUMO

The plastid genome is transcribed by three different RNA polymerases, one is called plastid-encoded RNA polymerase (PEP) and two are called nucleus-encoded RNA polymerases (NEPs). PEP transcribes preferentially photosynthesis-related genes in mature chloroplasts while NEP transcribes preferentially housekeeping genes during early phases of plant development, and it was generally thought that during plastid differentiation the building up of the NEP transcription system precedes the building up of the PEP transcription system. We have now analyzed in detail the establishment of the two different transcription systems, NEP and PEP, during germination and early seedling development on the mRNA and protein level. Experiments have been performed with two different plant species, Arabidopsis (Arabidopsis thaliana) and spinach (Spinacia oleracea). Results show that the building up of the two different transcription systems is different in the two species. However, in both species NEP as well as PEP are already present in seeds, and results using Tagetin as a specific inhibitor of PEP activity demonstrate that PEP is important for efficient germination, i.e. PEP is already active in not yet photosynthetically active seed plastids.


Assuntos
Arabidopsis/metabolismo , Germinação/fisiologia , Plastídeos/metabolismo , Spinacia oleracea/metabolismo , Transcrição Gênica , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Especificidade da Espécie , Spinacia oleracea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...