Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Space Res (Amst) ; 41: 52-55, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670652

RESUMO

The health risk of staying in space is a well-known fact, and the radiation doses to the astronauts must be monitored. The Pille-ISS thermoluminescent dosimeter system is present on the International Space Station (ISS) since 2003. We present an analysis of 60000 data points over 19 years from the 90 min automatic measurements and show a 4-day-long segment of 15 min measurements. In the case of the 15 min we show that the mapping of the radiation environment for the orbit of the ISS is possible with the Pille system. From our results the dose rates inside the South Atlantic Anomaly (SAA) are at least 1 magnitude higher than outside. From the 90 min data, we select orbits passing through the SAA. A statistical correlation in the SAA between the ISS altitude and monthly mean dose rate is presented with the Spearman correlation value of ρSAA=0.56. The dose rate and the sunspot number show strong inverse Pearson correlation (R2=-0.90) at a given altitude.


Assuntos
Astronautas , Astronave , Dosimetria Termoluminescente , Astronave/instrumentação , Dosimetria Termoluminescente/instrumentação , Dosimetria Termoluminescente/métodos , Humanos , Doses de Radiação , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Radiação Cósmica , Voo Espacial
2.
Radiat Prot Dosimetry ; 171(4): 453-462, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26503856

RESUMO

Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research aeroplanes. However, there is only limited information about that between 15 and 30 km altitudes. In order to study the radiation environment in the stratosphere, an experiment was built by students from Hungarian universities that flew on board the BEXUS (Balloon Experiments for University Students) stratospheric balloon in Northern Sweden, from the ESRANGE Space Center. The main technical goals of the experiment were to test at the first time the TRITEL 3D silicon detector telescope system in close to space conditions and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TRITEL system to determine dosimetric and radiation quantities during the balloon flight and to intercompare the TRITEL and Pille results to provide a correction factor for the Pille measurements. To fulfil the scientific and technological objectives, several different dosimeter systems were included in the experiment: an advanced version of the TRITEL silicon detector telescope, Geiger-Müller (GM) counters and Pille thermoluminescent dosimeters. The float altitude of the BEXUS balloon was ∼28.6 km; the total flight time was ∼4 h. Measurement data from the active instruments were received in real time by the ground team during the mission. There were no failures in the operation of the system; everything worked as expected. This article presents the scientific goals and results in detail. From the TRITEL measurements, the linear energy transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined. Estimations for the uncertainty in the TRITEL measurements were given. The deposited energy spectra measured with the TRITEL instrument were compared with the count rates measured with the GM counters. The experiences and results gained in the frame of the project will be used in the evaluation of TRITEL data from measurements on board the International Space Station. As an outlook a short overview is given of the planned rocket radiation experiments based on the system used in the BEXUS programme.


Assuntos
Radiação Cósmica , Monitoramento de Radiação/métodos , Astronave/instrumentação , Dosimetria Termoluminescente/métodos , Aeronaves , Humanos , Transferência Linear de Energia , Distribuição Normal , Doses de Radiação , Radiometria , Silício , Atividade Solar , Voo Espacial , Telescópios
3.
Radiat Prot Dosimetry ; 120(1-4): 401-4, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16581928

RESUMO

One of the many risks of long-duration space flights is the excessive exposure to cosmic radiation, which has great importance particularly during solar flares and higher sun activity. Monitoring of the cosmic radiation on board space vehicles is carried out on the basis of wide international co-operation. Since space radiation consists mainly of charged heavy particles (protons, alpha and heavier particles), the equivalent dose differs significantly from the absorbed dose. A radiation weighting factor (w(R)) is used to convert absorbed dose (Gy) to equivalent dose (Sv). w(R) is a function of the linear energy transfer of the radiation. Recently used equipment is suitable for measuring certain radiation field parameters changing in space and over time, so a combination of different measurements and calculations is required to characterise the radiation field in terms of dose equivalent. The objectives of this project are to develop and manufacture a three-axis silicon detector telescope, called Tritel, and to develop software for data evaluation of the measured energy deposition spectra. The device will be able to determine absorbed dose and dose equivalent of the space radiation.


Assuntos
Algoritmos , Lentes , Silício/química , Silício/efeitos da radiação , Voo Espacial/instrumentação , Dosimetria Termoluminescente/instrumentação , Relação Dose-Resposta à Radiação , Eletrônica , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Reprodutibilidade dos Testes , Semicondutores , Sensibilidade e Especificidade , Propriedades de Superfície , Dosimetria Termoluminescente/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...