Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
2.
J Extracell Biol ; 3(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38405579

RESUMO

The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.

3.
EMBO J ; 43(5): 780-805, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316991

RESUMO

Inflammation is a common condition of prostate tissue, whose impact on carcinogenesis is highly debated. Microbial colonization is a well-documented cause of a small percentage of prostatitis cases, but it remains unclear what underlies the majority of sterile inflammation reported. Here, androgen- independent fluctuations of PSA expression in prostate cells have lead us to identify a prominent function of the Transient Receptor Potential Cation Channel Subfamily M Member 8 (TRPM8) gene in sterile inflammation. Prostate cells secret TRPM8 RNA into extracellular vesicles (EVs), which primes TLR3/NF-kB-mediated inflammatory signaling after EV endocytosis by epithelial cancer cells. Furthermore, prostate cancer xenografts expressing a translation-defective form of TRPM8 RNA contain less collagen type I in the extracellular matrix, significantly more infiltrating NK cells, and larger necrotic areas as compared to control xenografts. These findings imply sustained, androgen-independent expression of TRPM8 constitutes as a promoter of anticancer innate immunity, which may constitute a clinically relevant condition affecting prostate cancer prognosis.


Assuntos
Neoplasias da Próstata , Canais de Cátion TRPM , Humanos , Masculino , Androgênios , Inflamação/genética , Fator Regulador 3 de Interferon , Proteínas de Membrana , NF-kappa B/genética , Neoplasias da Próstata/genética , Receptor 3 Toll-Like/genética , Canais de Cátion TRPM/genética , Animais
4.
Cancer Discov ; 14(3): 424-445, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197680

RESUMO

Castration-resistant prostate cancer (CRPC) is a heterogeneous disease associated with phenotypic subtypes that drive therapy response and outcome differences. Histologic transformation to castration-resistant neuroendocrine prostate cancer (CRPC-NE) is associated with distinct epigenetic alterations, including changes in DNA methylation. The current diagnosis of CRPC-NE is challenging and relies on metastatic biopsy. We developed a targeted DNA methylation assay to detect CRPC-NE using plasma cell-free DNA (cfDNA). The assay quantifies tumor content and provides a phenotype evidence score that captures diverse CRPC phenotypes, leveraging regions to inform transcriptional state. We tested the design in independent clinical cohorts (n = 222 plasma samples) and qualified it achieving an AUC > 0.93 for detecting pathology-confirmed CRPC-NE (n = 136). Methylation-defined cfDNA tumor content was associated with clinical outcomes in two prospective phase II clinical trials geared towards aggressive variant CRPC and CRPC-NE. These data support the application of targeted DNA methylation for CRPC-NE detection and patient stratification. SIGNIFICANCE: Neuroendocrine prostate cancer is an aggressive subtype of treatment-resistant prostate cancer. Early detection is important, but the diagnosis currently relies on metastatic biopsy. We describe the development and validation of a plasma cell-free DNA targeted methylation panel that can quantify tumor fraction and identify patients with neuroendocrine prostate cancer noninvasively. This article is featured in Selected Articles from This Issue, p. 384.


Assuntos
Ácidos Nucleicos Livres , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Metilação de DNA , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/diagnóstico , Neoplasias de Próstata Resistentes à Castração/genética , Biópsia , Ácidos Nucleicos Livres/genética
5.
J Extracell Biol ; 2(9)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38046436

RESUMO

Multi-analyte liquid biopsies represent an emerging opportunity for non-invasive cancer assessment. We developed ONCE (ONe Aliquot for Circulating Elements), an approach for the isolation of extracellular vesicles (EV) and cell-free DNA (cfDNA) from a single aliquot of blood. We assessed ONCE performance to classify HER2-positive early-stage breast cancer (BrCa) patients by combining EV-associated RNA (EV-RNA) and cfDNA signals on n=64 healthy donors (HD) and non-metastatic BrCa patients. Specifically, we isolated EV-enriched samples by a charge-based (CB) method and investigated EV-RNA and cfDNA by next-generation sequencing (NGS) and by digital droplet PCR (ddPCR). Sequencing of cfDNA and EV-RNA from HER2- and HER2+ patients demonstrated concordance with in situ molecular analyses of matched tissues. Combined analysis of the two circulating analytes by ddPCR showed increased sensitivity in ERBB2/HER2 detection compared to single nucleic acid components. Multi-analyte liquid biopsy prediction performance was comparable to tissue-based sequencing results from TCGA. Also, imaging flow cytometry analysis revealed HER2 protein on the surface of EV isolated from the HER2+ BrCa plasma, thus corroborating the potential relevance of studying EV as companion analyte to cfDNA. This data confirms the relevance of combining cfDNA and EV-RNA for HER2 cancer assessment and supports the ONCE as a valuable tool for multi-analytes liquid biopsies' clinical implementation.

6.
Waste Manag ; 172: 308-319, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939602

RESUMO

Slow pyrolysis, a widely recognized thermochemical technique, is employed to produce biochar usually under inert atmospheres. Recently, there is a growing interest in utilizing CO2 as a carrier gas during pyrolysis as an alternative to inert atmospheres, aiming to modify the resulting pyrolytic products and make them suitable for different applications. This study investigated and compared the impact of CO2 atmosphere with N2 on pyrolysis of food waste, rice husk, and grape tree branches waste via slow pyrolysis at temperatures of 400, 500, and 600 °C at 5 and 15 °C/min for 1 h, to evaluate biochar production and its properties. The results demonstrate that CO2 atmosphere increased the biochar yield for all feedstocks and significantly influenced the physicochemical properties of biochar. Compared to N2, CO2-derived biochar exhibited less volatile matter, higher carbon content, lower O/H and O/C molar ratios and enhanced textural properties. This study highlighted the potential of utilizing CO2 for biochar production and tailoring biochar properties for specific applications and the findings contribute to the establishment of sustainable and efficient waste management systems and the production of value-added biochar products.


Assuntos
Dióxido de Carbono , Eliminação de Resíduos , Pirólise , Alimentos , Carvão Vegetal
7.
Nat Commun ; 14(1): 2214, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072390

RESUMO

Bladder Cancer (BLCa) inter-patient heterogeneity is the primary cause of treatment failure, suggesting that patients could benefit from a more personalized treatment approach. Patient-derived organoids (PDOs) have been successfully used as a functional model for predicting drug response in different cancers. In our study, we establish PDO cultures from different BLCa stages and grades. PDOs preserve the histological and molecular heterogeneity of the parental tumors, including their multiclonal genetic landscapes, and consistently share key genetic alterations, mirroring tumor evolution in longitudinal sampling. Our drug screening pipeline is implemented using PDOs, testing standard-of-care and FDA-approved compounds for other tumors. Integrative analysis of drug response profiles with matched PDO genomic analysis is used to determine enrichment thresholds for candidate markers of therapy response and resistance. Finally, by assessing the clinical history of longitudinally sampled cases, we can determine whether the disease clonal evolution matched with drug response.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Avaliação Pré-Clínica de Medicamentos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Organoides/patologia
8.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36653909

RESUMO

DNA-methylation alterations are common in cancer and display unique characteristics that make them ideal markers for tumor quantification and classification. Here we present MIMESIS, a computational framework exploiting minimal DNA-methylation signatures composed by a few dozen informative DNA-methylation sites to quantify and classify tumor signals in tissue and cell-free DNA samples. Extensive analyses of multiple independent and heterogenous datasets including >7200 samples demonstrate the capability of MIMESIS to provide precise estimations of tumor content and to enable accurate classification of tumor type and molecular subtype. To assess our framework for clinical applications, we designed a MIMESIS-informed assay incorporating the minimal signatures for breast cancer. Using both artificial samples and clinical serial cell-free DNA samples from patients with metastatic breast cancer, we show that our approach provides accurate estimations of tumor content, sensitive detection of tumor signal and the ability to capture clinically relevant molecular subtype in patients' circulation. This study provides evidence that our extremely parsimonious approach can be used to develop cost-effective and highly scalable DNA-methylation assays that could support and facilitate the implementation of precision oncology in clinical practice.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Humanos , Feminino , Ácidos Nucleicos Livres/genética , Medicina de Precisão , Metilação de DNA , Neoplasias da Mama/genética , Biomarcadores Tumorais/genética , DNA de Neoplasias/genética
9.
Waste Manag ; 157: 301-311, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584494

RESUMO

Municipal solid waste (MSW) production in the world has increased by 60 % in recent years. Incineration of MSW reduces their volume in conjunction with energy recovery. Incineration produces two residues, namely bottom ash (BA) and fly ash (FA), with high concentration of heavy metals and organic pollutants, especially for FA, making them an environmental concern. Vitrification is a costly, highly safe high temperature treatment, ensuring encapsulation of heavy metals. FA vitrification requires a source of silica to be able to get vitrified. In this study, we have proposed valorizing treated (vitrified) FA through the production of porous glass-ceramics, subsequently to MSWI. The entire process, from incineration to glass-ceramics production, was evaluated for several scenarios by Life Cycle Assessment (LCA) using Sima Pro 9.0. Three main scenarios were analysed; each one considering a different silica source: bottom ash (BA), glass cullet (G) and silica sand (S), and for each scenario, three thermal recovery subscenarios were assumed: no thermal recovery used to heat FA prior to vitrification (N), heating FA prior to vitrification using incineration gases thermal recovery (T) and methane-combustion-aided thermal recovery, which exploits methane combustion to further increase the gases temperature (M). Results proved that vitrification was a technically feasible and environmentally-energetically sustainable technology. The result indicates that the most eco-sustainable scenario was using bottom ashes as a silica source together with methane-combustion-aided recovery: 0.467 kgCO2,eq, 5.83 × 10-8 carcinogenic-CTUh and 9.26 MJ required per kg of glass-ceramics produced.


Assuntos
Metais Pesados , Eliminação de Resíduos , Animais , Cinza de Carvão/química , Metano/análise , Dióxido de Silício , Porosidade , Incineração/métodos , Metais Pesados/análise , Resíduos Sólidos/análise , Gases/análise , Cerâmica , Estágios do Ciclo de Vida , Carbono , Material Particulado
10.
Nucleic Acids Res ; 50(22): 12809-12828, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36537238

RESUMO

Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.


Assuntos
Processamento Alternativo , Caderinas , Histonas , Cromatina , Histonas/metabolismo , Lisina/metabolismo , RNA/metabolismo , Caderinas/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Transtorno do Espectro Autista/genética
11.
NAR Cancer ; 4(2): zcac016, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35664542

RESUMO

Sequencing of cell-free DNA (cfDNA) in cancer patients' plasma offers a minimally-invasive solution to detect tumor cell genomic alterations to aid real-time clinical decision-making. The reliability of copy number detection decreases at lower cfDNA tumor fractions, limiting utility at earlier stages of the disease. To test a novel strategy for detection of allelic imbalance, we developed a prostate cancer bespoke assay, PCF_SELECT, that includes an innovative sequencing panel covering ∼25 000 high minor allele frequency SNPs and tailored analytical solutions to enable allele-informed evaluation. First, we assessed it on plasma samples from 50 advanced prostate cancer patients. We then confirmed improved detection of genomic alterations in samples with <10% tumor fractions when compared against an independent assay. Finally, we applied PCF_SELECT to serial plasma samples intensively collected from three patients previously characterized as harboring alterations involving DNA repair genes and consequently offered PARP inhibition. We identified more extensive pan-genome allelic imbalance than previously recognized in prostate cancer. We confirmed high sensitivity detection of BRCA2 allelic imbalance with decreasing tumor fractions resultant from treatment and identified complex ATM genomic states that may be incongruent with protein losses. Overall, we present a framework for sensitive detection of allele-specific copy number changes in cfDNA.

12.
Cancers (Basel) ; 14(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35267426

RESUMO

The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing's sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes-mostly TMPRSS2-characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.

13.
Cancer Lett ; 534: 215612, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35259458

RESUMO

21q22.2-3 deletion is the most common copy number alteration in prostate cancer (PCa). The genomic rearrangement results in the androgen-dependent de novo expression of ETS-related gene (ERG) in prostate cancer cells, a condition promoting tumor progression to advanced stages of the disease. Interestingly, ERG expression characterizes 5-30% of tumor precursor lesions - High Grade Prostatic Intraepithelial Neoplasia (HGPIN) - where its role remains unclear. Here, by combining organoids technology with Click-chemistry coupled Mass Spectrometry, we demonstrate a prominent role of ERG in remodeling the protein secretome of prostate progenitors. Functionally, by lowering autocrine Wnt-4 signaling, ERG represses canonical Wnt pathway in prostate progenitors, and, in turn, promotes the accumulation of DNA double strand breaks via Gsk3ß-dependent degradation of the tumor suppressor Nkx3.1. On the other hand, by shaping extracellular paracrine signals, ERG strengthens the pro-oxidative transcriptional signature of inflammatory macrophages, which we demonstrate to infiltrate pre-malignant ERG positive prostate lesions. These findings highlight previously unrecognized functions of ERG in undermining adult prostate progenitor niche through cell autonomous and non-autonomous mechanisms. Overall, by supporting the survival and proliferation of prostate progenitors in the absence of growth stimuli and promoting the accumulation of DNA damage through destabilization of Nkx3.1, ERG could orchestrate the prelude to neoplastic transformation.


Assuntos
Glicogênio Sintase Quinase 3 beta , Proteínas de Homeodomínio , Próstata , Neoplasias da Próstata , Fatores de Transcrição , Regulador Transcricional ERG , Animais , Instabilidade Genômica , Glicogênio Sintase Quinase 3 beta/genética , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Proteínas Oncogênicas , Próstata/patologia , Neoplasias da Próstata/patologia , Transativadores/metabolismo , Fatores de Transcrição/genética , Regulador Transcricional ERG/genética
14.
J Pathol ; 257(3): 274-284, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35220606

RESUMO

Primary prostate cancer (PCa) can show marked molecular heterogeneity. However, systematic analyses comparing primary PCa and matched metastases in individual patients are lacking. We aimed to address the molecular aspects of metastatic progression while accounting for the heterogeneity of primary PCa. In this pilot study, we collected 12 radical prostatectomy (RP) specimens from men who subsequently developed metastatic castration-resistant prostate cancer (mCRPC). We used histomorphology (Gleason grade, focus size, stage) and immunohistochemistry (IHC) (ERG and p53) to identify independent tumors and/or distinct subclones of primary PCa. We then compared molecular profiles of these primary PCa areas to matched metastatic samples using whole-exome sequencing (WES) and amplicon-based DNA and RNA sequencing. Based on combined pathology and molecular analysis, seven (58%) RP specimens harbored monoclonal and topographically continuous disease, albeit with some degree of intratumor heterogeneity; four (33%) specimens showed true multifocal disease; and one displayed monoclonal disease with discontinuous topography. Early (truncal) events in primary PCa included SPOP p.F133V (one patient), BRAF p.K601E (one patient), and TMPRSS2:ETS rearrangements (eight patients). Activating AR alterations were seen in nine (75%) mCRPC patients, but not in matched primary PCa. Hotspot TP53 mutations, found in metastases from three patients, were readily present in matched primary disease. Alterations in genes encoding epigenetic modifiers were observed in several patients (either shared between primary foci and metastases or in metastatic samples only). WES-based phylogenetic reconstruction and/or clonality scores were consistent with the index focus designated by pathology review in six out of nine (67%) cases. The three instances of discordance pertained to monoclonal, topographically continuous tumors, which would have been considered as unique disease in routine practice. Overall, our results emphasize pathologic and molecular heterogeneity of primary PCa, and suggest that comprehensive IHC-assisted pathology review and genomic analysis are highly concordant in nominating the 'index' primary PCa area. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Genômica , Humanos , Masculino , Proteínas Nucleares/genética , Filogenia , Projetos Piloto , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Repressoras/genética
15.
Int J Cancer ; 150(7): 1166-1173, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605002

RESUMO

Cancer is a risk factor for venous thromboembolism (VTE). Plasma tumor DNA (ptDNA) is an independent predictor of outcome in metastatic castration-resistant prostate cancer (mCRPC). We aimed to investigate the association between ptDNA and VTE in mCRPC. This prospective biomarker study included 180 mCRPC patients treated with abiraterone and enzalutamide from April 2013 to December 2018. We excluded patients with a previous VTE history and/or ongoing anticoagulation therapy. Targeted next-generation sequencing was performed to determine ptDNA fraction from pretreatment plasma samples. VTE risk based on survival analysis was performed using cumulative incidence function and estimating sub-distributional hazard ratio (SHR). At a median follow-up of 58 months (range 0.5-111.0), we observed 21 patients who experienced VTE with a cumulative incidence at 12 months of 17.1% (95% confidence interval [CI] 10.3-23.9). Elevated ptDNA, visceral metastasis, prior chemotherapy and lactate dehydrogenase (LDH) were significantly associated with higher VTE incidence compared to patients with no thrombosis (12-month estimate, 18.6% vs 3.5%, P = .0003; 44.4% vs 14.8%, P = .015; 24.7% vs 4.5%, P = .006; and 30.0% vs 13.5%, P = .05, respectively). In the multivariate analysis including ptDNA level, visceral metastases, number of lesions and serum LDH, high ptDNA fraction was the only independent factor associated with the risk of thrombosis (HR 5.78, 95% CI 1.63-20.44, P = .006). These results first suggest that baseline ptDNA fraction in mCRPC patients treated with abiraterone or enzalutamide may be associated with increased VTE risk. These patients may be followed-up more closely for the VTE risk, and the need for a primary thromboprophylaxis should be taken into account in mCRPC with elevated ptDNA.


Assuntos
DNA de Neoplasias/sangue , Neoplasias de Próstata Resistentes à Castração/complicações , Tromboembolia Venosa/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , L-Lactato Desidrogenase/sangue , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/patologia , Risco
16.
Cancer Lett ; 524: 57-69, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656688

RESUMO

Growing bodies of evidence have demonstrated that the identification of prostate cancer (PCa) biomarkers in the patients' blood and urine may remarkably improve PCa diagnosis and progression monitoring. Among diverse cancer-derived circulating materials, extracellular RNA molecules (exRNAs) represent a compelling component to investigate cancer-related alterations. Once outside the intracellular environment, exRNAs circulate in biofluids either in association with protein complexes or encapsulated inside extracellular vesicles (EVs). Notably, EV-associated RNAs (EV-RNAs) were used for the development of several assays (such as the FDA-approved Progensa Prostate Cancer Antigen 3 (PCA3 test) aiming at improving early PCa detection. EV-RNAs encompass a mixture of species, including small non-coding RNAs (e.g. miRNA and circRNA), lncRNAs and mRNAs. Several methods have been proposed to isolate EVs and relevant RNAs, and to perform RNA-Seq studies to identify potential cancer biomarkers. However, EVs in the circulation of a cancer patient include a multitude of diverse populations that are released by both cancer and normal cells from different tissues, thereby leading to a heterogeneous EV-RNA-associated transcriptional signal. Decrypting the complexity of such a composite signal is nowadays the major challenge faced in the identification of specific tumor-associated RNAs. Multiple deconvolution algorithms have been proposed so far to infer the enrichment of cancer-specific signals from gene expression data. However, novel strategies for EVs sorting and sequencing of RNA associated to single EVs populations will remarkably facilitate the identification of cancer-related molecules. Altogether, the studies summarized here demonstrate the high potential of using EV-RNA biomarkers in PCa and highlight the urgent need of improving technologies and computational approaches to characterize specific EVs populations and their relevant RNA cargo.


Assuntos
Antígenos de Neoplasias/genética , Ácidos Nucleicos Livres/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Biomarcadores Tumorais/genética , Vesículas Extracelulares/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , RNA-Seq
17.
Cell Syst ; 13(2): 183-193.e7, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34731645

RESUMO

Pan-cancer studies sketched the genomic landscape of the tumor types spectrum. We delineated the purity- and ploidy-adjusted allele-specific profiles of 4,950 patients across 27 tumor types from the Cancer Genome Atlas (TCGA). Leveraging allele-specific data, we reclassified as loss of heterozygosity (LOH) 9% and 7% of apparent copy-number wild-type and gain calls, respectively, and overall observed more than 18 million allelic imbalance somatic events at the gene level. Reclassification of copy-number events revealed associations between driver mutations and LOH, pointing out the timings between the occurrence of point mutations and copy-number events. Integrating allele-specific genomics and matched transcriptomics, we observed that allele-specific gene status is relevant in the regulation of TP53 and its targets. Further, we disclosed the role of copy-neutral LOH in the impairment of tumor suppressor genes and in disease progression. Our results highlight the role of LOH in cancer and contribute to the understanding of tumor progression.


Assuntos
Perda de Heterozigosidade , Neoplasias , Alelos , Genômica , Humanos , Perda de Heterozigosidade/genética , Neoplasias/genética
18.
Commun Biol ; 4(1): 1249, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728774

RESUMO

Differentially DNA methylated regions (DMRs) inform on the role of epigenetic changes in cancer. We present Rocker-meth, a new computational method exploiting a heterogeneous hidden Markov model to detect DMRs across multiple experimental platforms. Through an extensive comparative study, we first demonstrate Rocker-meth excellent performance on synthetic data. Its application to more than 6,000 methylation profiles across 14 tumor types provides a comprehensive catalog of tumor type-specific and shared DMRs, and agnostically identifies cancer-related partially methylated domains (PMD). In depth integrative analysis including orthogonal omics shows the enhanced ability of Rocker-meth in recapitulating known associations, further uncovering the pan-cancer relationship between DNA hypermethylation and transcription factor deregulation depending on the baseline chromatin state. Finally, we demonstrate the utility of the catalog for the study of colorectal cancer single-cell DNA-methylation data.


Assuntos
Biologia Computacional/métodos , Metilação de DNA , Epigênese Genética , Neoplasias/genética , Humanos , Cadeias de Markov
19.
J Environ Manage ; 299: 113678, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523543

RESUMO

This study assessed the anaerobic digestion (AD) of wastes deriving from cosmetics production: sludge from onsite wastewater treatment plant (sWWTP), residues of shampoo/conditioner (RSC) and sludge from mascara production (MS), considered as single substrates and as mixture according to the produced amounts (54 %-wt sWWTP, 31 %-wt RSC, 13 %-wt MS, plus 2 %-wt food waste from the canteen, FW). Total COD (CODT) was 624-1436 g O2/kg VS, while soluble COD was 5-23 %-wt of CODT. AD tests at 35 °C achieved the following biogas yields: 0.10 Nm3/kgvs (70 %-v/v methane) for sWWTP; 0.07 Nm3/kgvs (62 %-v/v methane) for RSC; 0.04 Nm3/kgvs (67 %-v/v methane) for MS. The mixed substrates underwent physico-chemical pre-treatments (thermo-alkaline, TA: 120 min at 50 °C; thermo-alkaline-sonication, TAS: 15 min at 40 kHz and 80 °C, both based on the addition of 0.08 g NaOH per each g of total solid in the substrate), reaching 64-66% disintegration rate, and AD tests (5 %-wt dry substance) at 35 and 52 °C. Biogas yields were (for TA and TAS respectively): 0.22 and 0.20 Nm3/kgVS (62-70% methane); 0.21 and 0.19 Nm3/kgVS (66-66% methane) at 52 °C. At both temperatures, methane yields considerably improved (+71-100%), compared to mixed untreated substrates, and 5-8 %-wt total solids reductions were observed. A technical-economic scale-up assessment completed the research. The energy analysis highlighted the crucial role of TA pre-treatment in achieving the process energetic sustainability. The economic analysis showed that the AD of the considered cosmetic waste could be sustainable anyway, thanks to the savings related to the disposal of the digestate compared to current waste management costs.


Assuntos
Cosméticos , Eliminação de Resíduos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Estudos de Viabilidade , Alimentos , Resíduos Industriais/análise , Metano , Esgotos
20.
Comput Struct Biotechnol J ; 19: 4394-4403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429855

RESUMO

Mutual Exclusivity analysis of genomic aberrations contributes to the exploration of potential synthetic lethal (SL) relationships thus guiding the nomination of specific cancer cells vulnerabilities. When multiple classes of genomic aberrations and large cohorts of patients are interrogated, exhaustive genome-wide analyses are not computationally feasible with commonly used approaches. Here we present Fast Mutual Exclusivity (FaME), an algorithm based on matrix multiplication that employs a logarithm-based implementation of the Fisher's exact test to achieve fast computation of genome-wide mutual exclusivity tests; we show that brute force testing for mutual exclusivity of hundreds of millions of aberrations combinations can be performed in few minutes. We applied FaME to allele-specific data from whole exome experiments of 27 TCGA studies cohorts, detecting both mutual exclusivity of point mutations, as well as allele-specific copy number signals that span sets of contiguous cytobands. We next focused on a case study involving the loss of tumor suppressors and druggable genes while exploiting an integrated analysis of both public cell lines loss of function screens data and patients' transcriptomic profiles. FaME algorithm implementation as well as allele-specific analysis output are publicly available at https://github.com/demichelislab/FaME.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...