Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(17): 12865-12876, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34428050

RESUMO

Cyclotriazadisulfonamide (CADA) compounds selectively down-modulate two human proteins of potential therapeutic interest, cluster of differentiation 4 (CD4) and sortilin. Progranulin is secreted from some breast cancer cells, causing dedifferentiation of receiving cancer cells and cancer stem cell proliferation. Inhibition of progranulin binding to sortilin, its main receptor, can block progranulin-induced metastatic breast cancer using a triple-negative in vivo xenograft model. In the current study, seven CADA compounds (CADA, VGD020, VGD071, TL020, TL023, LAL014, and DJ010) were examined for reduction of cellular sortilin expression and progranulin-induced breast cancer stem cell propagation. In addition, inhibition of progranulin-induced mammosphere formation was examined and found to be most significant for TL020, TL023, VGD071, and LAL014. Full experimental details are given for the synthesis and characterization of the four new compounds (TL020, TL023, VGD071, and DJ010). Comparison of solubilities, potencies, and cytotoxicities identified VGD071 as a promising candidate for future studies using mouse breast cancer models.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Progranulinas/farmacologia , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sulfonamidas/química
2.
ACS Omega ; 4(1): 1254-1264, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30729225

RESUMO

Macrocyclic triamine disulfonamides can be synthesized by double Tsuji-Trost N-allylation reaction of open-chain disulfonamides with 2-alkylidene-1,3-propanediyl bis(carbonates). The previously used Atkins-Richman macrocyclization method generally gives lower yields and requires more tedious purification of the product. Solvent, palladium source, ligand, and concentration have all been varied to optimize the yields of two key 12-membered ring bioactive compounds, CADA and VGD020. The new approach tolerates a wide range of functional groups and gives highest yields for symmetrical compounds in which the acidities of the two sulfonamide groups are matched, although the yields of unsymmetrical compounds are still generally good. The method has also been extended to the synthesis of 11-membered rings, pyridine-fused macrocycles, and products bearing an ester or aryl substituent on the exocyclic double bond.

3.
J Mater Chem B ; 3(42): 8328-8336, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26509038

RESUMO

Magnetofluorescent nanoparticles (MFNPs) have recently attracted significant research interests due to their potential applications in biological manipulation and imaging. In this work, through a simple and fast self-assembling process, we first report the preparation of zwitterionic MFNPs (ZW-MFNPs) in the form of micelles using our newly synthesized zwitterionic amphiphiles, CuInS2/ZnS quantum dots, and MnFe2O4 magnetic nanoparticles. ZW-MFNPs integrate both MnFe2O4 magnetic nanoparticles and CuInS2/ZnS quantum dots in their hydrophobic cores and zwitterionic groups such as carboxybetaine and sulfobetaine on their hydrophilic shells. ZW-MFNPs possess dual imaging properties, high (Mn + Fe) recovery, excellent stability in aqueous solutions with a wide pH/ionic-strength range and physiological media, minimal cytotoxicity, and specific targeting to brain tumor cells after bioconjugation with chlorotoxin. The unique characteristics of ZW-MFNPs may open an avenue for these particles to be employed in broad biomedical applications.

4.
J Colloid Interface Sci ; 437: 140-146, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25313477

RESUMO

Zwitterionic quantum dots prepared through incorporated zwitterionic ligands on quantum dot surfaces, are being paid significant attention in biomedical applications because of their excellent colloidal stability across a wide pH and ionic strength range, antifouling surface, good biocompatibility, etc. In this work, we report a dual-lipid encapsulation approach to prepare bioconjugatable zwitterionic quantum dots using amidosulfobetaine-16 lipids, dipalmitoyl-sn-glycero-3-phosphoethanolamine lipids with functional head groups, and CuInS2/ZnS quantum dots in a tetrahydrofuran/methanol/water solvent system with sonication. Amidosulfobetaine-16 is a zwitterionic lipid and dipalmitoyl-sn-glycero-3-phosphoethanolamine, with its functional head, provides bioconjugation capability. Under sonication, tetrahydrofuran/methanol containing amidosulfobetaine-16, dipalmitoyl-sn-glycero-3-phosphoethanolamine, and hydrophobic quantum dots are dispersed in water to form droplets. Highly water-soluble tetrahydrofuran/methanol in droplets is further displaced by water, which induces the lipid self-assembling on hydrophobic surface of quantum dots and thus forms water soluble zwitterionic quantum dots. The prepared zwitterionic quantum dots maintain colloidal stability in aqueous solutions with high salinity and over a wide pH range. They are also able to be conjugated with biomolecules for bioassay with minimal nonspecific binding.


Assuntos
Materiais Biocompatíveis , Lipídeos/química , Pontos Quânticos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Concentração Osmolar , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Colloids Surf A Physicochem Eng Asp ; 464: 134-142, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25484523

RESUMO

Magnetofluorescent nanocomposites (MFNCs) providing a single nanoscale platform with multimodal properties are gaining momentum in biological manipulation, biomedical imaging and therapy. In this work, we report the preparation of MFNCs integrating MnFe2O4 magnetic nanoparticles (MNPs), CuInS2/ZnS quantum dots (QDs) and poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PEG-PLGA) in a tetrahydrofuran (THF)/water solvent system. Through sonication and quick solvent displacement, multiple nanoparticles of each type are co-encapsulated within the hydrophobic core of PEG-PLGA micelles. The developed fabrication process is simple and fast. Moreover, due to the low toxicity of CuInS2/ZnS QDs, the fabrication process is environmentally benign. The fabricated MFNCs were further characterized regarding their fundamental physical, chemical and biological properties. Results reveal that the MFNCs possess high (Mn + Fe) recovery rates, and the optical properties and magnetic relaxivity of the MFNCs are sensitive to the MNP:QD mass ratios in the fabrication. Furthermore, the MFNCs present excellent stability in aqueous solutions, minimal cytotoxicity, and capability for bioconjugation. This study opens an avenue for the MFNCs to be employed in broad biological or biomedical applications.

6.
J Nanopart Res ; 16(8)2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25750584

RESUMO

A surface modification approach adopting polymer encapsulation was developed to prepare zwitterion-like quantum dots (ZWL-QDs). The fundamental physical, chemical, and biological properties of the ZWL-QDs were characterized. It is found that the ZWL-QDs almost preserve the quantum yield (QY) of native hydrophobic QDs in organic solvents, and also are compact in size (7 ~ 10 nm hydrodynamic diameter) and stable over wide pHs or in high salinity solutions. Further cellular study shows that the ZWL-QDs with a concentration less than 100 nM have a minimal cytotoxicity and thus are biocompatible. Characterizing and understanding these essential properties of the ZWL-QDs are an important step before employing them for various applications.

7.
Expert Opin Drug Discov ; 7(1): 39-48, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22468892

RESUMO

INTRODUCTION: CADA is a synthetic small molecule that inhibits HIV replication in cell cultures through down-modulating cell surface CD4 by inhibiting cotranslational translocation of nascent CD4 across the ER membrane in a signal sequence-specific manner. Analogs have been prepared mainly to increase potency and investigate the mechanism of action. AREAS COVERED: This article reviews progress on discovery of more potent CADA analogs, including symmetrical and unsymmetrical compounds, as well as fluorescent derivatives. The article also discusses some properties of CADA and a more potent analog (KKD023) that are relevant to drug development, including aqueous solubility, permeability, metabolism and oral bioavailability. EXPERT OPINION: Further studies on CADA analogs should focus on improving both potency and drug-like properties, and on elucidating the detailed mechanism of action. Solubility and permeability may be improved by reducing molecular weight, decreasing molecular flexibility and symmetry, or by a prodrug approach inducing active transport. Identifying the molecular mechanism of CD4 down-modulation may aid in assessing potential side effects of such immunomodulatory/anti-HIV drugs, and it could potentially lead to a general approach to designing drugs for specifically down-modulating other cell-surface proteins.


Assuntos
Antígenos CD4/efeitos dos fármacos , Compostos Heterocíclicos com 1 Anel/farmacologia , Compostos Heterocíclicos/farmacologia , Sulfonamidas/farmacologia , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/farmacologia , Disponibilidade Biológica , Antígenos CD4/metabolismo , Desenho de Fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacocinética , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/farmacocinética , Humanos , Permeabilidade , Solubilidade , Sulfonamidas/química , Sulfonamidas/farmacocinética , Replicação Viral/efeitos dos fármacos
8.
J Med Chem ; 54(16): 5712-21, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21800875

RESUMO

Cyclotriazadisulfonamide (CADA) inhibits HIV at submicromolar levels by specifically down-modulating cell-surface and intracellular CD4. The specific biomolecular target of CADA compounds is unknown, but previous studies led to an unsymmetrical binding model. To test this model, methods were developed for effective synthesis of diverse, unsymmetrical CADA compounds. A total of 13 new, unsymmetrical target compounds were synthesized, as well as one symmetrical analogue. The new compounds display a wide range of potency for CD4 down-modulation in CHO·CD4-YFP cells. VGD020 (IC(50) = 46 nM) is the most potent CADA compound discovered to date, and VGD029 (IC(50) = 730 nM) is the most potent fluorescent analogue. Structure-activity relationships are analyzed from the standpoint of additive or nonadditive energy effects of different substituents. They appear to be consistent with the zipper-type mechanism in which entropy costs are reduced for additional stabilizing interactions between the small molecule and its protein target.


Assuntos
Antígenos CD4/metabolismo , Regulação para Baixo/efeitos dos fármacos , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Antígenos CD4/genética , Células CHO , Cricetinae , Cricetulus , Citometria de Fluxo , Compostos Heterocíclicos/síntese química , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Químicos , Estrutura Molecular , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...