Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 1: 179, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30393776

RESUMO

Emerging and re-emerging zoonotic viral diseases are major threats to global health, economic stability, and national security. Vaccines are key for reducing coronaviral disease burden; however, the utility of live-attenuated vaccines is limited by risks of reversion or repair. Because of their history of emergence events due to their prevalence in zoonotic pools, designing live-attenuated coronavirus vaccines that can be rapidly and broadly implemented is essential for outbreak preparedness. Here, we show that coronaviruses with completely rewired transcription regulatory networks (TRNs) are effective vaccines against SARS-CoV. The TRN-rewired viruses are attenuated and protect against lethal SARS-CoV challenge. While a 3-nt rewired TRN reverts via second-site mutation upon serial passage, a 7-nt rewired TRN is more stable, suggesting that a more extensively rewired TRN might be essential for avoiding growth selection. In summary, rewiring the TRN is a feasible strategy for limiting reversion in an effective live-attenuated coronavirus vaccine candidate that is potentially portable across the Nidovirales order.

2.
Hepatology ; 67(6): 2430-2448, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29194682

RESUMO

Several highly effective, interferon-free, direct-acting antiviral (DAA)-based regimens are available for the treatment of chronic hepatitis C virus (HCV) infection. Despite impressive efficacy overall, a small proportion of patients in registrational trials experienced treatment failure, which in some cases was associated with the detection of HCV resistance-associated substitutions (RASs) at baseline. In this article, we describe methods and key findings from independent regulatory analyses investigating the impact of baseline nonstructural (NS) 3 Q80K and NS5A RASs on the efficacy of current United States Food and Drug Administration (FDA)-approved regimens for patients with HCV genotype (GT) 1 or GT3 infection. These analyses focused on clinical trials that included patients who were previously naïve to the DAA class(es) in their investigational regimen and characterized the impact of baseline RASs that were enriched in the viral population as natural or transmitted polymorphisms (i.e., not drug-selected RASs). We used a consistent approach to optimize comparability of results across different DAA regimens and patient populations, including the use of a 15% sensitivity cutoff for next-generation sequencing results and standardized lists of NS5A RASs. These analyses confirmed that detection of NS3 Q80K or NS5A baseline RASs was associated with reduced treatment efficacy for multiple DAA regimens, but their impact was often minimized with the use of an intensified treatment regimen, such as a longer treatment duration and/or addition of ribavirin. We discuss the drug resistance-related considerations that contributed to pretreatment resistance testing and treatment recommendations in drug labeling for FDA-approved DAA regimens. CONCLUSION: Independent regulatory analyses confirmed that baseline HCV RASs can reduce the efficacy of certain DAA-based regimens in selected patient groups. However, highly effective treatment options are available for patients with or without baseline RASs. (Hepatology 2018;67:2430-2448).


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C Crônica/tratamento farmacológico , Polimorfismo Genético , Combinação de Medicamentos , Humanos , Resultado do Tratamento
5.
Pediatr Infect Dis J ; 32(10): 1144-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23584584

RESUMO

Palivizumab is a monoclonal antibody indicated for the prevention of serious lower respiratory tract disease caused by respiratory syncytial virus infection in infants. The potential for palivizumab to interfere with commercially available respiratory syncytial virus diagnostic tests was demonstrated. Negative test results in palivizumab-treated subjects should be interpreted with caution and confirmed by a nucleic acid amplification-based assay.


Assuntos
Anticorpos Monoclonais Humanizados/química , Imunoensaio/métodos , Infecções por Vírus Respiratório Sincicial/diagnóstico , Vírus Sinciciais Respiratórios/isolamento & purificação , Virologia/métodos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Antivirais/sangue , Antivirais/administração & dosagem , Antivirais/química , Humanos , Cavidade Nasal/imunologia , Cavidade Nasal/virologia , Palivizumab , Kit de Reagentes para Diagnóstico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/imunologia , Sensibilidade e Especificidade
6.
J Virol ; 84(9): 4556-68, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20181704

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus of the genus Alphavirus that is responsible for a significant disease burden in Central and South America through sporadic outbreaks into human and equid populations. For humans, 2 to 4% of cases are associated with encephalitis, and there is an overall case mortality rate of approximately 1%. In mice, replication of the virus within neurons of the central nervous system (CNS) leads to paralyzing, invariably lethal encephalomyelitis. However, mice infected with certain attenuated mutants of the virus are able to control the infection within the CNS and recover. To better define what role T cell responses might be playing in this process, we infected B cell-deficient microMT mice with a VEEV mutant that induces mild, sublethal illness in immune competent mice. Infected microMT mice rapidly developed the clinical signs of severe paralyzing encephalomyelitis but were eventually able to control the infection and recover fully from clinical illness. Recovery in this system was T cell dependent and associated with a dramatic reduction in viral titers within the CNS, followed by viral persistence in the brain. Further comparison of the relative roles of T cell subpopulations within this system revealed that CD4(+) T cells were better producers of gamma interferon (IFN-gamma) than CD8(+) T cells and were more effective at controlling VEEV within the CNS. Overall, these results suggest that T cells, especially CD4(+) T cells, can successfully control VEEV infection within the CNS and facilitate recovery from a severe viral encephalomyelitis.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/imunologia , Linfócitos T/imunologia , Animais , Encéfalo/virologia , Encefalomielite Equina Venezuelana/patologia , Feminino , Humanos , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia , Carga Viral
7.
J Virol ; 81(19): 10280-91, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17634238

RESUMO

Coronaviruses express open reading frame 1a (ORF1a) and ORF1b polyproteins from which 16 nonstructural proteins (nsp) are derived. The highly conserved region at the carboxy terminus of ORF1a is processed by the nsp5 proteinase (Mpro) into mature products, including nsp7, nsp8, nsp9, and nsp10, proteins with predicted or identified activities involved in RNA synthesis. Although continuous translation and proteolytic processing of ORF1ab by Mpro is required for replication, it is unknown whether specific cleavage events within the polyprotein are dispensable. We determined the requirement for the nsp7 to nsp10 proteins and their processing during murine hepatitis virus (MHV) replication. Through use of an MHV reverse genetics system, in-frame deletions of the coding sequences for nsp7 to nsp10, or ablation of their flanking Mpro cleavage sites, were made and the effects upon replication were determined. Viable viruses were characterized by analysis of Mpro processing, RNA transcription, and growth fitness. Deletion of any of the regions encoding nsp7 to nsp10 was lethal. Disruption of the cleavage sites was lethal with the exception of that of the nsp9-nsp10 site, which resulted in a mutant virus with attenuated replication. Passage of the attenuated nsp9-nsp10 cleavage mutant increased fitness to near-wild-type kinetics without reversion to a virus capable of processing nsp9-nsp10. We also confirmed the presence of a second cleavage site between nsp7 and nsp8. In order to determine whether a distinct function could be attributed to preprocessed forms of the polyprotein, including nsp7 to nsp10, the genes encoding nsp7 and nsp8 were rearranged. The mutant virus was not viable, suggesting that the uncleaved protein may be essential for replication or proteolytic processing.


Assuntos
Vírus da Hepatite Murina/fisiologia , Poliproteínas/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Animais , Células Cultivadas , Camundongos , Dados de Sequência Molecular , Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/genética , Mutação , Fases de Leitura Aberta , Poliproteínas/genética , RNA Polimerase Dependente de RNA/genética , Deleção de Sequência , Transcrição Gênica , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...