Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(15): 11025-11031, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34251794

RESUMO

A heteroleptic amidoalane precursor is presented as a more suitably designed candidate to replace trimethylaluminum (TMA) for atomic layer deposition of aluminum nitride (AlN). The lack of C-Al bonds and the strongly reducing hydride ligands in [AlH2(NMe2)]3 (1) were specifically chosen to limit impurities in target aluminum nitride (AlN) films. Compound 1 is made in a high yield, scalable synthesis involving lithium aluminum hydride and dimethylammonium chloride. It has a vapor pressure of 1 Torr at 40 °C and evaporates with negligible residual mass in thermogravimetric experiments. Ammonia (NH3) plasma and 1 in an atomic layer deposition (ALD) process produced crystalline AlN films above 200 °C with an Al:N ratio of 1.04. Carbon and oxygen impurities in resultant AlN films were reduced to <1% and <2%, respectively. By using a precursor with a rational and advantageous design, we can improve the material quality of AlN films compared to those deposited using the industrial standard trimethylaluminum and could reduce material cost by up to 2 orders of magnitude.

2.
ACS Omega ; 3(2): 1546-1554, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29503971

RESUMO

The range of applications of diverse graphene-based devices could be limited by insufficient surface reactivity, unsatisfied shaping, or null energy gap of graphene. Engineering the graphene structure by laser techniques can adjust the transport properties and the surface area of graphene, providing devices of different nature with a higher capacitance. Additionally, the created periodic potential and appearance of the active external/inner/edge surface centers determine the multifunctionality of the graphene surface and corresponding devices. Here, we report on the first implementation of nonlinear laser lithography (NLL) for multilayer graphene (MLG) structuring, which offers a low-cost, single-step, and high-speed nanofabrication process. The NLL relies on the employment of a high repetition rate femtosecond Yb fiber laser that provides generation of highly reproducible, robust, uniform, and periodic nanostructures over a large surface area (1 cm2/15 s). NLL allows one to obtain clearly predesigned patterned graphene structures without fabrication tolerances, which are caused by contacting mask contamination, polymer residuals, and direct laser exposure of the graphene layers. We represent regularly patterned MLG (p-MLG) obtained by the chemical vapor deposition method on an NLL-structured Ni foil. We also demonstrate tuning of chemical (wettability) and electro-optical (transmittance and sheet resistance) properties of p-MLG by laser power adjustments. In conclusion, we show the great promise of fabricated devices, namely, supercapacitors, and Li-ion batteries by using NLL-assisted graphene patterning. Our approach demonstrates a new avenue to pattern graphene for multifunctional device engineering in optics, photonics, and bioelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...