Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(3): eadj1984, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241380

RESUMO

Precise manipulation of flexible surgical tools is crucial in minimally invasive surgical procedures, necessitating a miniature and flexible robotic probe that can precisely direct the surgical instruments. In this work, we developed a polymer-based robotic fiber with a thermal actuation mechanism by local heating along the sides of a single fiber. The fiber robot was fabricated by highly scalable fiber drawing technology using common low-cost materials. This low-profile (below 2 millimeters in diameter) robotic fiber exhibits remarkable motion precision (below 50 micrometers) and repeatability. We developed control algorithms coupling the robot with endoscopic instruments, demonstrating high-resolution in situ molecular and morphological tissue mapping. We assess its practicality and safety during in vivo laparoscopic surgery on a porcine model. High-precision motion of the fiber robot delivered endoscopically facilitates the effective use of cellular-level intraoperative tissue identification and ablation technologies, potentially enabling precise removal of cancer in challenging surgical sites.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Robótica , Suínos , Animais , Procedimentos Cirúrgicos Robóticos/métodos , Laparoscopia/métodos , Procedimentos Cirúrgicos Minimamente Invasivos
2.
Biomedicines ; 11(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37509647

RESUMO

In recent years, steerable needles have attracted significant interest in relation to minimally invasive surgery (MIS). Specifically, the flexible, programmable bevel-tip needle (PBN) concept was successfully demonstrated in vivo in an evaluation of the feasibility of convection-enhanced delivery (CED) for chemotherapeutics within the ovine model with a 2.5 mm PBN prototype. However, further size reductions are necessary for other diagnostic and therapeutic procedures and drug delivery operations involving deep-seated tissue structures. Since PBNs have a complex cross-section geometry, standard production methods, such as extrusion, fail, as the outer diameter is reduced further. This paper presents our first attempt to demonstrate a new manufacturing method for PBNs that employs thermal drawing technology. Experimental characterisation tests were performed for the 2.5 mm PBN and the new 1.3 mm thermally drawn (TD) PBN prototype described here. The results show that thermal drawing presents a significant advantage in miniaturising complex needle structures. However, the steering behaviour was affected due to the choice of material in this first attempt, a limitation which will be addressed in future work.

3.
Curr Probl Cardiol ; 48(2): 101482, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336117

RESUMO

Treadmill Exercise Test (TET) results and patients' clinical symptoms influence cardiologists' decision to perform Coronary Angiography (CAG) which is an invasive procedure. Since TET has high false positive rates, it can cause an unnecessary invasive CAG. Our primary objective was to develop a machine learning model capable of optimizing TET performance based on electrocardiography (ECG) waves characteristics and signals. TET reports from 294 patients who underwent CAG following high risk TET were collected and categorized into those with critical CAD and others. The signal was converted to time series format. A dataset containing the P, QRS, and T wave times and amplitudes was created. Using this dataset, 5 machine learning algorithms were trained with 5-fold cross validation. All these models were then compared to the performance of cardiologists on V5 signal. The results from 5 machine learning models were clearly superior to the cardiologists' V5 signal performance (P < 0.0001). In addition, the XGBoost model, with an accuracy of 80.92±6.42% and an area under the curve (AUC) of 0.78±0.06, was the most successful model. Machine learning models can produce high-performance diagnoses using the V5 signal markers only as it does not require any clinical markers obtained from TET reports. This can lead to significant contributions to improving clinical prediction in non-invasive methods.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/diagnóstico , Teste de Esforço/métodos , Angiografia Coronária , Eletrocardiografia , Aprendizado de Máquina
4.
J Clin Med ; 11(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36079042

RESUMO

Dermoscopy is the visual examination of the skin under a polarized or non-polarized light source. By using dermoscopic equipment, many lesion patterns that are invisible under visible light can be clearly distinguished. Thus, more accurate decisions can be made regarding the treatment of skin lesions. The use of images collected from a dermoscope has both increased the performance of human examiners and allowed the development of deep learning models. The availability of large-scale dermoscopic datasets has allowed the development of deep learning models that can classify skin lesions with high accuracy. However, most dermoscopic datasets contain images that were collected from digital dermoscopic devices, as these devices are frequently used for clinical examination. However, dermatologists also often use non-digital hand-held (optomechanical) dermoscopes. This study presents a dataset consisting of dermoscopic images taken using a mobile phone-attached hand-held dermoscope. Four deep learning models based on the MobileNetV1, MobileNetV2, NASNetMobile, and Xception architectures have been developed to classify eight different lesion types using this dataset. The number of images in the dataset was increased with different data augmentation methods. The models were initialized with weights that were pre-trained on the ImageNet dataset, and then they were further fine-tuned using the presented dataset. The most successful models on the unseen test data, MobileNetV2 and Xception, had performances of 89.18% and 89.64%. The results were evaluated with the 5-fold cross-validation method and compared. Our method allows for automated examination of dermoscopic images taken with mobile phone-attached hand-held dermoscopes.

5.
Micromachines (Basel) ; 9(3)2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30424060

RESUMO

A new microrobot manipulation technique with high precision (nano level) positional accuracy to move in a liquid environment with diamagnetic levitation is presented. Untethered manipulation of microrobots by means of externally applied magnetic forces has been emerging as a promising field of research, particularly due to its potential for medical and biological applications. The purpose of the presented method is to eliminate friction force between the surface of the substrate and microrobot. In an effort to achieve high accuracy motion, required magnetic force for the levitation of the microrobot was determined by finite element method (FEM) simulations in COMSOL (version 5.3, COMSOL Inc., Stockholm, Sweden) and verified by experimental results. According to position of the lifter magnet, the levitation height of the microrobot in the liquid was found analytically, and compared with the experimental results head-to-head. The stable working range of the microrobot is between 30 µm to 330 µm, and it was confirmed in both simulations and experimental results. It can follow the given trajectory with high accuracy (<1 µm error avg.) at varied speeds and levitation heights. Due to the nano-level positioning accuracy, desired locomotion can be achieved in pre-specified trajectories (sinusoidal or circular). During its locomotion, phase difference between lifter magnet and carrier magnet has been observed, and relation with drag force effect has been discussed. Without using strong electromagnets or bulky permanent magnets, our manipulation approach can move the microrobot in three dimensions in a liquid environment.

6.
Micromachines (Basel) ; 9(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30424296

RESUMO

Magnetically actuated microrobot in a liquid media is faced with the problem of head-tilting reaction caused by its hydrodynamic structure and its speed while moving horizontally. When the instance microrobot starts a lateral motion, the drag force acting on it increases. Thus, the microrobot is unable to move parallel to the surface due to the existence of drag force that cannot be neglected, particularly at high speeds such as >5 mm/s. The effect of it scales exponentially at different speeds and the head-tilting angle of the microrobot changes relative to the reference surface. To the best of our knowledge, there is no prior study on this problem, and no solution has been proposed so far. In this study, we developed and experimented with 3 control models to stabilize microrobot motion characteristics in liquid media to achieve accurate lateral locomotion. The microrobot moves in an untethered manner, and its localization is carried out by a neodymium magnet (grade N48) placed inside its polymer body. This permanent magnet is called a carrier-magnet. The fabricated microrobot is levitated diamagnetically using a pyrolytic graphite placed under it and an external permanent magnet, called a lifter-magnet (grade N48), aligned above it. The lifter-magnet is attached to a servo motor mechanism which can control carrier-magnet orientation along with roll and pitch axes. Controlling the angle of this servo motor, together with the lifter-magnet, allowed us to cope with the head-tilting reaction instantly. Based on the finite element method (FEM), analyses that were designed according to this experimental setup, the equations giving the relation of microrobot speed with servo motor angle along with the microrobot head-tilting angle with servo motor angle, were derived. The control inputs were obtained by COMSOL® (version 5.3, COMSOL Inc., Stockholm, Sweden). Using these derived equations, the rule-based model, laser model, and hybrid model techniques were proposed in this study to decrease the head-tilting angle. Motion control algorithms were applied in di-ionized water medium. According to the results for these 3 control strategies, at higher speeds (>5 mm/s) and 5 mm horizontal motion trajectory, the average head-tilting angle was reduced to 2.7° with the ruled-based model, 1.1° with the laser model, and 0.7° with the hybrid model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...