Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz. j. microbiol ; 48(2): 275-285, April.-June 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839373

RESUMO

Abstract The purpose of this study was to investigate the production of flavor compounds from olive mill waste by microbial fermentation of Rhizopus oryzae and Candida tropicalis. Olive mill waste fermentations were performed in shake and bioreactor cultures. Production of flavor compounds from olive mill waste was followed by Gas Chromatography–Mass spectrometry, Gas chromatography- olfactometry and Spectrum Sensory Analysis ®. As a result, 1.73-log and 3.23-log cfu/mL increases were observed in the microbial populations of R. oryzae and C. tropicalis during shake cultures, respectively. C. tropicalis can produce a higher concentration of d-limonene from olive mill waste than R. oryzae in shake cultures. The concentration of d-limonene was determined as 185.56 and 249.54 µg/kg in the fermented olive mill waste by R. oryzae and C. tropicalis in shake cultures respectively. In contrast, R. oryzae can produce a higher concentration of d-limonene (87.73 µg/kg) d-limonene than C. tropicalis (11.95 µg/kg) in bioreactor cultures. Based on sensory analysis, unripe olive, wet towel, sweet aromatic, fermented aromas were determined at high intensity in olive mill waste fermented with R. oryzae meanwhile olive mill waste fermented with C. tropicalis had only a high intensity of unripe olive and oily aroma.


Assuntos
Rhizopus/metabolismo , Candida tropicalis/metabolismo , Olea/metabolismo , Aromatizantes/metabolismo , Resíduos Industriais , Terpenos/metabolismo , Biotecnologia/métodos , Contagem de Colônia Microbiana , Cicloexenos/metabolismo , Fermentação , Olfatometria , Cromatografia Gasosa-Espectrometria de Massas
2.
Braz J Microbiol ; 48(2): 275-285, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28017541

RESUMO

The purpose of this study was to investigate the production of flavor compounds from olive mill waste by microbial fermentation of Rhizopus oryzae and Candida tropicalis. Olive mill waste fermentations were performed in shake and bioreactor cultures. Production of flavor compounds from olive mill waste was followed by Gas Chromatography-Mass spectrometry, Gas chromatography- olfactometry and Spectrum Sensory Analysis®. As a result, 1.73-log and 3.23-log cfu/mL increases were observed in the microbial populations of R. oryzae and C. tropicalis during shake cultures, respectively. C. tropicalis can produce a higher concentration of d-limonene from olive mill waste than R. oryzae in shake cultures. The concentration of d-limonene was determined as 185.56 and 249.54µg/kg in the fermented olive mill waste by R. oryzae and C. tropicalis in shake cultures respectively. In contrast, R. oryzae can produce a higher concentration of d-limonene (87.73µg/kg) d-limonene than C. tropicalis (11.95µg/kg) in bioreactor cultures. Based on sensory analysis, unripe olive, wet towel, sweet aromatic, fermented aromas were determined at high intensity in olive mill waste fermented with R. oryzae meanwhile olive mill waste fermented with C. tropicalis had only a high intensity of unripe olive and oily aroma.


Assuntos
Candida tropicalis/metabolismo , Aromatizantes/metabolismo , Resíduos Industriais , Olea/metabolismo , Rhizopus/metabolismo , Biotecnologia/métodos , Contagem de Colônia Microbiana , Cicloexenos/metabolismo , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Limoneno , Olfatometria , Terpenos/metabolismo
3.
Bioprocess Biosyst Eng ; 38(6): 1143-55, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25614449

RESUMO

Bioflavours are called natural flavour and/or fragrance compounds which are produced using metabolic pathway of the microorganism and/or plant cells or their enzyme systems with bioengineering approaches. The aim of this study was to investigate bioflavour production from tomato and red pepper pomaces by Kluyveromyces marxianus and Debaryomyces hansenii. Obtained specific growth rates of K. marxianus and D. hansenii in tomato pomace were 0.081/h and 0.177/h, respectively. The bioflavour profile differed between the yeasts. Both yeasts can produce esters and alcohols such as phenyl ethyl alcohol, isoamyl alcohol, isoamyl acetate, phenyl ethyl acetate and isovaleric acid. "Tarhana" and "rose" were descriptive flavour terms for tomato and pepper pomaces fermented by K. marxianus, respectively. Tomato pomace fermented by D. hansenii had the most intense "green bean" flavour while "fermented vegetable" and "storage/yeast" were defined as characteristic flavour terms for pepper pomaces fermented by D. hansenii.


Assuntos
Ascomicetos/metabolismo , Capsicum/química , Aromatizantes , Kluyveromyces/metabolismo , Solanum lycopersicum/química , Reatores Biológicos , Fermentação , Cromatografia Gasosa-Espectrometria de Massas
4.
Yeast ; 32(1): 67-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25308412

RESUMO

The yeast Kluyveromyces marxianus produces a range of volatile molecules with applications as fragrances or flavours. The purpose of this study was to establish how nutritional conditions influence the production of these metabolites. Four strains were grown on synthetic media, using a variety of carbon and nitrogen sources and volatile metabolites analysed using gas chromatography-mass spectrometry (GC-MS). The nitrogen source had pronounced effects on metabolite production: levels of the fusel alcohols 2-phenylethanol and isoamyl alcohol were highest when yeast extract was the nitrogen source, and ammonium had a strong repressing effect on production of 2-phenylethyl acetate. In contrast, the nitrogen source did not affect production of isoamyl acetate or ethyl acetate, indicating that more than one alcohol acetyl transferase activity is present in K. marxianus. Production of all acetate esters was low when cells were growing on lactose (as opposed to glucose or fructose), with a lower intracellular pool of acetyl CoA being one explanation for this observation. Bioinformatic and phylogenetic analysis of the known yeast alcohol acetyl transferases ATF1 and ATF2 suggests that the ancestral protein Atf2p may not be involved in synthesis of volatile acetate esters in K. marxianus, and raises interesting questions as to what other genes encode this activity in non-Saccharomyces yeasts. Identification of all the genes involved in ester synthesis will be important for development of the K. marxianus platform for flavour and fragrance production.


Assuntos
Carbono/metabolismo , Aromatizantes/metabolismo , Kluyveromyces/metabolismo , Nitrogênio/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Ésteres/metabolismo , Aromatizantes/química , Kluyveromyces/química , Kluyveromyces/classificação , Filogenia , Compostos Orgânicos Voláteis/química
5.
Indian J Endocrinol Metab ; 17(1): 153-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23776870

RESUMO

Adrenal incidentaloma was detected in an 81-year-old male patient and a 37-year-old female patient who had been diagnosed with essential thrombocytosis. Each patient's Janus Kinase 2 (JAK2) V617F mutation was positive, and they were evaluated as having non-functional adrenal incidentaloma. The JAK2 activates the signal transducers and activators of transcription (STAT) proteins which then activate the phosphoinositol-3 kinases, Ras, mitogen-activated protein (MAP) kinases, and transcription. Constitutive activation causes cell proliferation and dysregulation of apoptosis. It is thought that STAT3 activation-mediated JAK family kinases have a central role in the solid tumor cell series. Permanent activation of STAT3 and STAT5 causes tumor cell proliferation, survival, metastasis, and an increase in tumor-mediated inflammation in solid and hematologic tumors. According to our literature screening, irregular JAK signaling, seen at the pathogenesis of many solid and hematologic tumors, has not been previously evaluated with regard to adrenal tumors. As a result, our cases are the first coexistence of JAK V617F mutation with adrenal incidentaloma in the literature. Because of this, we think that JAK2 mutation must be evaluated to clarify the etiology of adrenal incidentalomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...