Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38927958

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype with high metastasis and mortality rates. Given the lack of actionable targets such as ER and HER2, TNBC still remains an unmet therapeutic challenge. Despite harboring high CDK4/6 expression levels, the efficacy of CDK4/6 inhibition in TNBC has been limited due to the emergence of resistance. The resistance to CDK4/6 inhibition is mainly mediated by RB1 inactivation. Since our aim is to overcome resistance to CDK4/6 inhibition, in this study, we primarily used the cell lines that do not express RB1. Following a screening for activated receptor tyrosine kinases (RTKs) upon CDK4/6 inhibition, we identified the TAM (Tyro3, Axl, and MerTK) RTKs as a crucial therapeutic vulnerability in TNBC. We show that targeting the TAM receptors with a novel inhibitor, sitravatinib, significantly sensitizes TNBC to CDK4/6 inhibitors. Upon prolonged HER2 inhibitor treatment, HER2+ breast cancers suppress HER2 expression, physiologically transforming into TNBC-like cells. We further show that the combined treatment is highly effective against drug-resistant HER2+ breast cancer as well. Following quantitative proteomics and RNA-seq data analysis, we extended our study into the immunophenotyping of TNBC. Given the roles of the TAM receptors in promoting the creation of an immunosuppressive tumor microenvironment (TME), we further demonstrate that the combination of CDK4/6 inhibitor abemaciclib and sitravatinib modifies the immune landscape of TNBC to favor immune checkpoint blockade. Overall, our study offers a novel and highly effective combination therapy against TNBC and potentially treatment-resistant HER2+ breast cancer that can be rapidly moved to the clinic.

2.
Sci Rep ; 12(1): 5651, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383227

RESUMO

Extracellular vesicles (EVs) play important roles in diabetes mellitus (DM) via connecting the immune cell response to tissue injury, besides stimulation to muscle insulin resistance, while DM is associated with increased risks for major cardiovascular complications. Under DM, chronic hyperglycemia, and subsequent increase in the production of reactive oxygen species (ROS) further lead to cardiac growth remodeling and dysfunction. The purinergic drug ticagrelor is a P2Y12 receptor antagonist. Although it is widely used in cardioprotection, the underlying molecular mechanism of its inhibitory effect on diabetic cardiomyopathy is poorly elucidated. Here, we aimed to understand how ticagrelor exerts its cardio-regulatory effects. For this purpose, we investigated the anti-oxidative and cardioprotective effect of EVs derived from ticagrelor-pretreated cardiomyocytes under DM conditions. To mimic DM in cardiomyocytes, we used high glucose incubated H9c2-cells (HG). HG cells were treated with EVs, which were derived from either ticagrelor-pretreated or untreated H9c2-cells. Our results demonstrated that ticagrelor-pretreated H9c2-derived EVs significantly decreased the hyperglycemia-induced aberrant ROS production, prevented the development of apoptosis and ER stress, and alleviated oxidative stress associated miRNA-expression profile. Importantly, EVs derived from ticagrelor-pretreated H9c2-cells enhanced endothelial cell migration and tube formation, suggesting a modulation of the EV profile in cardiomyocytes. Our data, for the first time, indicate that ticagrelor can exert an important regulatory effect on diabetic cardiomyopathy through extracellular vesicular modulation behind its receptor-inhibition-related effects.


Assuntos
Vesículas Extracelulares , Miócitos Cardíacos , Apoptose , Estresse do Retículo Endoplasmático , Vesículas Extracelulares/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ticagrelor/metabolismo , Ticagrelor/farmacologia
3.
Autophagy ; 13(9): 1512-1527, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28722539

RESUMO

The ingrained capacity of melanoma cells to rapidly evolve toward an aggressive phenotype is manifested by their increased ability to develop drug-resistance, evident in the case of vemurafenib, a therapeutic-agent targeting BRAFV600E. Previous studies indicated a tight correlation between heightened melanoma-associated macroautophagy/autophagy and acquired Vemurafenib resistance. However, how this vesicular trafficking pathway supports Vemurafenib resistance remains unclear. Here, using isogenic human and murine melanoma cell lines of Vemurafenib-resistant and patient-derived melanoma cells with primary resistance to the BRAFV600E inhibitor, we found that the enhanced migration and invasion of the resistant melanoma cells correlated with an enhanced autophagic capacity and autophagosome-mediated secretion of ATP. Extracellular ATP (eATP) was instrumental for the invasive phenotype and the expansion of a subset of Vemurafenib-resistant melanoma cells. Compromising the heightened autophagy in these BRAFV600E inhibitor-resistant melanoma cells through the knockdown of different autophagy genes (ATG5, ATG7, ULK1), reduced their invasive and eATP-secreting capacity. Furthermore, eATP promoted the aggressive nature of the BRAFV600E inhibitor-resistant melanoma cells by signaling through the purinergic receptor P2RX7. This autophagy-propelled eATP-dependent autocrine-paracrine pathway supported the maintenance and expansion of a drug-resistant melanoma phenotype. In conclusion, we have identified an autophagy-driven response that relies on the secretion of ATP to drive P2RX7-based migration and expansion of the Vemurafenib-resistant phenotype. This emphasizes the potential of targeting autophagy in the treatment and management of metastatic melanoma.


Assuntos
Trifosfato de Adenosina/metabolismo , Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Melanoma/genética , Melanoma/patologia , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Receptores Purinérgicos/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Vemurafenib
4.
Nat Methods ; 14(3): 228-232, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245209

RESUMO

We argue that the field of extracellular vesicle (EV) biology needs more transparent reporting to facilitate interpretation and replication of experiments. To achieve this, we describe EV-TRACK, a crowdsourcing knowledgebase (http://evtrack.org) that centralizes EV biology and methodology with the goal of stimulating authors, reviewers, editors and funders to put experimental guidelines into practice.


Assuntos
Pesquisa Biomédica , Bases de Dados Bibliográficas , Vesículas Extracelulares/fisiologia , Internacionalidade
5.
Front Oncol ; 6: 240, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27896217

RESUMO

Melanoma has emerged as a paradigm of a highly aggressive and plastic cancer, capable to co-opt the tumor stroma in order to adapt to the hostile microenvironment, suppress immunosurveillance mechanisms, and disseminate. In particular, oncogene- and aneuploidy-driven dysregulations of proteostasis in melanoma cells impose a rewiring of central proteostatic processes, such as the heat shock and unfolded protein responses, autophagy, and the endo-lysosomal system, to avoid proteotoxicity. Research over the past decade has indicated that alterations in key nodes of these proteostasis pathways act in conjunction with crucial oncogenic drivers to increase intrinsic adaptations of melanoma cells against proteotoxic stress, modulate the high metabolic demand of these cancer cells and the interface with other stromal cells, through the heightened release of soluble factors or exosomes. Here, we overview and discuss how key proteostasis pathways and vesicular trafficking mechanisms are turned into vital conduits of melanoma progression, by supporting cancer cell's adaptation to the microenvironment, limiting or modulating the ability to respond to therapy and fueling melanoma dissemination.

6.
Sci Transl Med ; 8(358): 358ra126, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27683551

RESUMO

De novo lipogenesis (DNL), the conversion of glucose and other substrates to lipids, is often associated with ectopic lipid accumulation, metabolic stress, and insulin resistance, especially in the liver. However, organ-specific DNL can also generate distinct lipids with beneficial metabolic bioactivity, prompting a great interest in their use for the treatment of metabolic diseases. Palmitoleate (PAO), one such bioactive lipid, regulates lipid metabolism in liver and improves glucose utilization in skeletal muscle when it is generated de novo from the obese adipose tissue. We show that PAO treatment evokes an overall lipidomic remodeling of the endoplasmic reticulum (ER) membranes in macrophages and mouse tissues, which is associated with resistance of the ER to hyperlipidemic stress. By preventing ER stress, PAO blocks lipid-induced inflammasome activation in mouse and human macrophages. Chronic PAO supplementation also lowers systemic interleukin-1ß (IL-1ß) and IL-18 concentrations in vivo in hyperlipidemic mice. Moreover, PAO prevents macrophage ER stress and IL-1ß production in atherosclerotic plaques in vivo, resulting in a marked reduction in plaque macrophages and protection against atherosclerosis in mice. These findings demonstrate that oral supplementation with a product of DNL such as PAO can promote membrane remodeling associated with metabolic resilience of intracellular organelles to lipid stress and limit the progression of atherosclerosis. These findings support therapeutic PAO supplementation as a potential preventive approach against complex metabolic and inflammatory diseases such as atherosclerosis, which warrants further studies in humans.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/uso terapêutico , Inflamassomos/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Membranas Intracelulares/metabolismo , Lipídeos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Placa Aterosclerótica/patologia
7.
Parkinsons Dis ; 2016: 9531917, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073711

RESUMO

The late endo-/lysosomal P-type ATPase ATP13A2 (PARK9) is implicated in Parkinson's disease (PD) and Kufor-Rakeb syndrome, early-onset atypical Parkinsonism. ATP13A2 interacts at the N-terminus with the signaling lipids phosphatidic acid (PA) and phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2), which modulate ATP13A2 activity under cellular stress conditions. Here, we analyzed stable human SHSY5Y cell lines overexpressing wild-type (WT) or ATP13A2 mutants in which three N-terminal lipid binding sites (LBS1-3) were mutated. We explored the regulatory role of LBS1-3 in the cellular protection by ATP13A2 against mitochondrial stress induced by rotenone and found that the LBS2-3 mutants displayed an abrogated protective effect. Moreover, in contrast to WT, the LBS2 and LBS3 mutants responded poorly to pharmacological inhibition of, respectively, PI(3,5)P2 and PA formation. We further demonstrate that PA and PI(3,5)P2 are also required for the ATP13A2-mediated protection against the toxic metals Mn(2+), Zn(2+), and Fe(3+), suggesting a general lipid-dependent activation mechanism of ATP13A2 in various PD-related stress conditions. Our results indicate that the ATP13A2-mediated protection requires binding of PI(3,5)P2 to LBS2 and PA to LBS3. Thus, targeting the N-terminal lipid binding sites of ATP13A2 might offer a therapeutic approach to reduce cellular toxicity of various PD insults including mitochondrial stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...