Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837251

RESUMO

One of the most devastating diseases of apples is scab, caused by the fungus Venturia inaequalis. Most commercial apple varieties are susceptible to this disease; only a few are resistant. Breeding approaches are being used to develop better apple varieties that are resistant to scab. Volatile organic compounds (VOCs) contribute greatly to a plant's phenotype, and their emission profile largely depends on the genotype. In the non-destructive phenotyping of plants, VOCs can be used as biomarkers. In this study, we assessed non-destructively the scab tolerance potential of resistant (cv. 'Prima') and susceptible (cv. 'Oregon Spur') apple cultivars by comparing their major leaf VOC compositions and relative proportions. A comparison of the leaf VOC profiles of the two cultivars revealed 16 different VOCs, with cis-3-hexenyl acetate (3HA) emerging as a biomarker of cultivar differences. V. inaequalis growth was significantly inhibited in vitro by 3HA treatment. 3HA was significantly effective in reducing scab symptoms on V. inaequalis-inoculated leaves of 'Oregon Spur.' The resistant cultivar 'Prima' also exhibited higher lipoxygenase (LOX) activity and α-linolenic acid (ALA) levels, suggesting that V. inaequalis resistance is linked to LOX activity and 3HA biosynthesis. This study proposes 3HA as a potential biomarker for rapid non-destructive screening of scab-resistant apple germplasm of 'Prima' based on leaf VOCs.


Assuntos
Ascomicetos , Resistência à Doença , Malus , Fenótipo , Doenças das Plantas , Folhas de Planta , Compostos Orgânicos Voláteis , Malus/microbiologia , Malus/genética , Malus/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Doenças das Plantas/microbiologia , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Resistência à Doença/genética , Lipoxigenase/metabolismo , Lipoxigenase/genética
2.
Pestic Biochem Physiol ; 200: 105844, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582571

RESUMO

Enzymes have attracted considerable scientific attention for their crucial role in detoxifying a wide range of harmful compounds. In today's global context, the extensive use of insecticides has emerged as a significant threat to the environment, sparking substantial concern. Insects, including economically important pests like Helicoverpa armigera, have developed resistance to conventional pest control methods through enzymes like carboxyl/cholinesterases. This study specifically focuses on a notable carboxyl/cholinesterase enzyme from Helicoverpa armigera (Ha006a), with the goal of harnessing its potential to combat environmental toxins. A total of six insecticides belonging to two different classes displayed varying inhibitory responses towards Ha006a, thereby rendering it effective in detoxifying a broader spectrum of insecticides. The significance of this research lies in discovering the bioremediation property of Ha006a, as it hydrolyzes synthetic pyrethroids (fenvalerate, λ-cyhalothrin and deltamethrin) and sequesters organophosphate (paraoxon ethyl, profenofos, and chlorpyrifos) insecticides. Additionally, the interaction studies between organophosphate insecticides and Ha006a helped in the fabrication of a novel electroanalytical sensor using a modified carbon paste electrode (MCPE). This sensor boasts impressive sensitivity, with detection limits of 0.019 µM, 0.15 µM, and 0.025 µM for paraoxon ethyl, profenofos, and chlorpyrifos, respectively. This study provides a comprehensive biochemical and biophysical characterization of the purified esterase Ha006a, showcasing its potential to remediate different classes of insecticides.


Assuntos
Clorpirifos , Inseticidas , Mariposas , Organotiofosfatos , Paraoxon/análogos & derivados , Piretrinas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Carboxilesterase/metabolismo , Helicoverpa armigera , Piretrinas/farmacologia , Piretrinas/metabolismo , Colinesterases , Resistência a Inseticidas
3.
Plant Physiol Biochem ; 207: 108371, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271863

RESUMO

Apple (Malus domestica) is an economically important rosaceous fruit crop grown at temperate climate zones. Nevertheless, its production is severely affected by scab disease caused by the ascomycetous fungus Venturia inaequalis (VI). Methyl jasmonate (MeJA) is a stress induced plant hormone, shown to induce resistance against wide range of pathogens. The current study investigated the role of MeJA in promoting scab tolerance in susceptible apple varieties through exogenous application of optimized (100 µM) MeJA concentration, followed by VI infection. According to our analysis, applying MeJA exogenously onto leaf surfaces resulted in increased membrane stability and decreased malondialdehyde levels in Red Delicious, suggesting that MeJA is capable of protecting tissues against oxidative damage through its role in restoring membrane stability. In addition, the changes in the levels of key antioxidative enzymes and reactive oxygen species (ROS) showed that exogenous MeJA maintains ROS homeostasis as well. Higher phenylalanine ammonia-lyase activity and increased accumulation of phenylpropanoids in MeJA-treated VI-infected plants indicated the MeJA reprogrammed phenylpropanoid biosynthesis pathway for scab tolerance. Our study of scab tolerance in apples induced by MeJA provides new insights into its physiological and biochemical mechanisms.


Assuntos
Acetatos , Ciclopentanos , Malus , Oxilipinas , Malus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Frutas , Homeostase , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...