Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(43): 51230-51244, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34669388

RESUMO

Thick epitaxial BaTiO3 films ranging from 120 nm to 1 µm were grown by off-axis RF magnetron sputtering on SrTiO3-templated silicon-on-insulator (SOI) substrates for use in electro-optic applications, where such large thicknesses are necessary. The films are of high quality, rivaling those grown by molecular beam epitaxy (MBE) in crystalline quality, but can be grown 10 times faster. Extraction of lattice parameters from geometric phase analysis of atomic-resolution scanning transmission electron microscopy images revealed how the in-plane and out-of-plane lattice spacings of sputtered BaTiO3 changes as a function of layer position within a thick film. Our results indicate that compared to molecular beam epitaxy, sputtered films retain their out-of-plane polarization (c-axis) orientation for larger thicknesses. We also find an unusual re-transition from in-plane polarization (a-axis) to out-of-plane polarization (c-axis), along with an anomalous lattice expansion, near the surface. We also studied a method of achieving 100% a-axis-oriented films using a two-step process involving amorphous growth and recrystallization of a seed layer followed by normal high temperature growth. While this method is successful in achieving full a-axis orientation even at low thicknesses, the resulting film has a large number of voids and misoriented grains. Electro-optic measurement using a transmission setup of a sputtered BTO film grown using the optimized conditions yields an effective Pockels coefficient as high as 183 pm/V. A Mach-Zehnder modulator fabricated on such films exhibits phase shifting with an equivalent Pockels coefficient of 157 pm/V. These results demonstrate that sputtered BTO thick films can be used for integrated electro-optic modulators for Si photonics.

2.
J Appl Phys ; 130(7): 070907, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34483360

RESUMO

Progress in computing architectures is approaching a paradigm shift: traditional computing based on digital complementary metal-oxide semiconductor technology is nearing physical limits in terms of miniaturization, speed, and, especially, power consumption. Consequently, alternative approaches are under investigation. One of the most promising is based on a "brain-like" or neuromorphic computation scheme. Another approach is quantum computing using photons. Both of these approaches can be realized using silicon photonics, and at the heart of both technologies is an efficient, ultra-low power broad band optical modulator. As silicon modulators suffer from relatively high power consumption, materials other than silicon itself have to be considered for the modulator. In this Perspective, we present our view on such materials. We focus on oxides showing a strong linear electro-optic effect that can also be integrated with Si, thus capitalizing on new materials to enable the devices and circuit architectures that exploit shifting computational machine learning paradigms, while leveraging current manufacturing infrastructure. This is expected to result in a new generation of computers that consume less power and possess a larger bandwidth.

3.
Nat Mater ; 18(1): 42-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420671

RESUMO

The electro-optical Pockels effect is an essential nonlinear effect used in many applications. The ultrafast modulation of the refractive index is, for example, crucial to optical modulators in photonic circuits. Silicon has emerged as a platform for integrating such compact circuits, but a strong Pockels effect is not available on silicon platforms. Here, we demonstrate a large electro-optical response in silicon photonic devices using barium titanate. We verify the Pockels effect to be the physical origin of the response, with r42 = 923 pm V-1, by confirming key signatures of the Pockels effect in ferroelectrics: the electro-optic response exhibits a crystalline anisotropy, remains strong at high frequencies, and shows hysteresis on changing the electric field. We prove that the Pockels effect remains strong even in nanoscale devices, and show as a practical example data modulation up to 50 Gbit s-1. We foresee that our work will enable novel device concepts with an application area largely extending beyond communication technologies.

4.
Ultramicroscopy ; 195: 25-31, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30176383

RESUMO

Background removal is an important step in the quantitative analysis of electron energy-loss structure. Existing methods usually require an energy-loss region outside the fine structure in order to estimate the background. This paper describes a method for signal-from-background separation that is based on subspace division. The linear space is divided into two subspaces. The signal is recovered from a linear subspace containing no background information, and the other subspace containing the background is discarded. This method does not rely on any signal outside the energy-loss range of interest and should be very helpful for multiple linear least-squares (MLLS) regression analysis on experimental signals with little or no available smooth pre-edge region or with overlapping pre-edge features. Use of the algorithm is demonstrated with several practical applications, including closely overlapping core-loss spectra and zero-loss peak removal. Tests based on experimental data indicate that the algorithm has similar or better performance relative to conventional pre-edge power-law fitting methods in applications such as MLLS regression for electron energy-loss near-edge structure.

5.
ACS Nano ; 12(8): 7682-7689, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30052026

RESUMO

The Si-compatibility of perovskite heterostructures offers the intriguing possibility of producing oxide-based quantum well (QW) optoelectronic devices for use in Si photonics. While the SrTiO3/LaAlO3 (STO/LAO) system has been studied extensively in the hopes of using the interfacial two-dimensional electron gas in Si-integrated electronics, the potential to exploit its giant 2.4 eV conduction band offset in oxide-based QW optoelectronic devices has so far been largely ignored. Here, we demonstrate room-temperature intersubband absorption in STO/LAO QW heterostructures at energies on the order of hundreds of meV, including at energies approaching the critically important telecom wavelength of 1.55 µm. We demonstrate the ability to control the absorption energy by changing the width of the STO well layers by a single unit cell and present theory showing good agreement with experiment. A detailed structural and chemical analysis of the samples via scanning transmission electron microscopy and electron energy loss spectroscopy is presented. This work represents an important proof-of-concept for the use of transition metal oxide QWs in Si-compatible optoelectronic devices.

6.
Sci Rep ; 8(1): 7721, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769572

RESUMO

The development of novel nano-oxide spintronic devices would benefit greatly from interfacing with emergent phenomena at oxide interfaces. In this paper, we integrate highly spin-split ferromagnetic semiconductor EuO onto perovskite SrTiO3 (001). A careful deposition of Eu metal by molecular beam epitaxy results in EuO growth via oxygen out-diffusion from SrTiO3. This in turn leaves behind a highly conductive interfacial layer through generation of oxygen vacancies. Below the Curie temperature of 70 K of EuO, this spin-polarized two-dimensional t 2g electron gas at the EuO/SrTiO3 interface displays very large positive linear magnetoresistance (MR). Soft x-ray angle-resolved photoemission spectroscopy (SX-ARPES) reveals the t 2g nature of the carriers. First principles calculations strongly suggest that Zeeman splitting, caused by proximity magnetism and oxygen vacancies in SrTiO3, is responsible for the MR. This system offers an as-yet-unexplored route to pursue proximity-induced effects in the oxide two-dimensional t 2g electron gas.

7.
J Chem Phys ; 147(21): 214301, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29221414

RESUMO

Work function values measured at different surfaces of a metal are usually different. This raises an interesting question: What is the work function of a nano-size crystal, where differently oriented facets can be adjacent? Work functions of metallic nanocrystals are also of significant practical interest, especially in catalytic applications. Using real space pseudopotentials constructed within density functional theory, we compute the local work function of large aluminum and gold nanocrystals. We investigate how the local work function follows the change of the surface plane orientation around multifaceted nanocrystals, and we establish the importance of the orbital character near the Fermi level in determining work function differences between facets.

8.
Sci Rep ; 7(1): 4068, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28642471

RESUMO

NbO2 has the potential for a variety of electronic applications due to its electrically induced insulator-to-metal transition (IMT) characteristic. In this study, we find that the IMT behavior of NbO2 follows the field-induced nucleation by investigating the delay time dependency at various voltages and temperatures. Based on the investigation, we reveal that the origin of leakage current in NbOx is partly due to insufficient Schottky barrier height originating from interface defects between the electrodes and NbOx layer. The leakage current problem can be addressed by inserting thin NiOy barrier layers. The NiOy inserted NbOx device is drift-free and exhibits high Ion/Ioff ratio (>5400), fast switching speed (<2 ns), and high operating temperature (>453 K) characteristics which are highly suitable to selector application for x-point memory arrays. We show that NbOx device with NiOx interlayers in series with resistive random access memory (ReRAM) device demonstrates improved readout margin (>29 word lines) suitable for x-point memory array application.

9.
J Chem Phys ; 146(5): 052817, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178808

RESUMO

Using in situ X-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and density functional theory, we analyzed the surface core level shifts and surface structure during the initial growth of ABO3 perovskites on Ge (001) by atomic layer deposition, where A = Ba, Sr and B = Ti, Hf, Zr. We find that the initial dosing of the barium- or strontium-bis(triisopropylcyclopentadienyl) precursors on a clean Ge surface produces a surface phase that has the same chemical and structural properties as the 0.5-monolayer Ba Zintl layer formed when depositing Ba by molecular beam epitaxy. Similar binding energy shifts are found for Ba, Sr, and Ge when using either chemical or elemental metal sources. The observed germanium surface core level shifts are consistent with the flattening of the initially tilted Ge surface dimers using both molecular and atomic metal sources. Similar binding energy shifts and changes in dimer tilting with alkaline earth metal adsorption are found with density functional theory calculations. High angle angular dark field scanning transmission microscopy images of BaTiO3, SrZrO3, SrHfO3, and SrHf0.55Ti0.45O3 reveal the location of the Ba (or Sr) atomic columns between the Ge dimers. The results imply that the organic ligands dissociate from the precursor after precursor adsorption on the Ge surface, producing the same Zintl template critical for perovskite growth on Group IV semiconductors during molecular beam epitaxy.

10.
Nanotechnology ; 28(7): 075706, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-27973350

RESUMO

Significant progress has been made in integrating novel materials into silicon photonic structures in order to extend the functionality of photonic circuits. One of these promising optical materials is BaTiO3 or barium titanate (BTO) that exhibits a very large Pockels coefficient as required for high-speed light modulators. However, all previous demonstrations show a noticable reduction of the Pockels effect in BTO thin films deposited on silicon substrates compared to BTO bulk crystals. Here, we report on the strong dependence of the Pockels effect in BTO thin films on their microstructure, and provide guidelines on how to engineer thin films with strong electro-optic response. We employ several deposition methods such as molecular beam epitaxy and chemical vapor deposition to realize BTO thin films with different morphology and crystalline structure. While a linear electro-optic response is present even in porous, polycrystalline BTO thin films with an effective Pockels coefficient r eff = 6 pm V-1, it is maximized for dense, tetragonal, epitaxial BTO films (r eff = 140 pm V-1). By identifying the key structural predictors of electro-optic response in BTO/Si, we provide a roadmap to fully exploit the linear electro-optic effect in novel hybrid oxide/semiconductor nanophotonic devices.

11.
ACS Appl Mater Interfaces ; 8(8): 5416-23, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26859048

RESUMO

Germanium (Ge)-based metal-oxide-semiconductor field-effect transistors are a promising candidate for high performance, low power electronics at the 7 nm technology node and beyond. However, the availability of high quality gate oxide/Ge interfaces that provide low leakage current density and equivalent oxide thickness (EOT), robust scalability, and acceptable interface state density (D(it)) has emerged as one of the most challenging hurdles in the development of such devices. Here we demonstrate and present detailed electrical characterization of a high-κ epitaxial oxide gate stack based on crystalline SrHfO3 grown on Ge (001) by atomic layer deposition. Metal-oxide-Ge capacitor structures show extremely low gate leakage, small and scalable EOT, and good and reducible D(it). Detailed growth strategies and postgrowth annealing schemes are demonstrated to reduce Dit. The physical mechanisms behind these phenomena are studied and suggest approaches for further reduction of D(it).

12.
Nat Commun ; 6: 6067, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25586049

RESUMO

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect-carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in epitaxial c-axis-oriented BaTiO3 grown by molecular beam epitaxy. Using the density functional theory, we demonstrate that switching of BaTiO3 polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms BaTiO3 tetragonality and the absence of any low-permittivity interlayer at the interface with Ge. The non-volatile, switchable nature of the single-domain out-of-plane ferroelectric polarization of BaTiO3 is confirmed using piezoelectric force microscopy. The effect of the polarization switching on the conductivity of the underlying Ge is measured using microwave impedance microscopy, clearly demonstrating a ferroelectric field effect.

13.
Nat Nanotechnol ; 10(1): 84-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25437745

RESUMO

The rapidly increasing global demand for energy combined with the environmental impact of fossil fuels has spurred the search for alternative sources of clean energy. One promising approach is to convert solar energy into hydrogen fuel using photoelectrochemical cells. However, the semiconducting photoelectrodes used in these cells typically have low efficiencies and/or stabilities. Here we show that a silicon-based photocathode with a capping epitaxial oxide layer can provide efficient and stable hydrogen production from water. In particular, a thin epitaxial layer of strontium titanate (SrTiO3) was grown directly on Si(001) by molecular beam epitaxy. Photogenerated electrons can be transported easily through this layer because of the conduction-band alignment and lattice match between single-crystalline SrTiO3 and silicon. The approach was used to create a metal-insulator-semiconductor photocathode that, under a broad-spectrum illumination at 100 mW cm(-2), exhibits a maximum photocurrent density of 35 mA cm(-2) and an open circuit potential of 450 mV; there was no observable decrease in performance after 35 hours of operation in 0.5 M H2SO4. The performance of the photocathode was also found to be highly dependent on the size and spacing of the structured metal catalyst. Therefore, mesh-like Ti/Pt nanostructured catalysts were created using a nanosphere lithography lift-off process and an applied-bias photon-to-current efficiency of 4.9% was achieved.

14.
Phys Rev Lett ; 113(15): 157602, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375742

RESUMO

The Kondo effect and ferromagnetism are the two many-body phenomena that emerge at the SrTiO(3) interfaces with polar materials, but do not occur in bulk SrTiO(3). By regarding the oxygen vacancy (OV) in SrTiO(3) as a magnetic impurity, we show that these two interface-specific phenomena can be attributed to the vacancies residing in the top TiO(2) plane of SrTiO(3). We identify three crucial ingredients: the local orbital mixing caused by an OV, reduced symmetry at the interface, and a strong in-plane stray electric field of the polar material. All three factors combine to result in the coupling between the impurity and conduction band at the interface, and can lead to both emergent phenomena. An OV-based Anderson impurity model is derived and solved using the numerical renormalization group method. The Kondo and Curie temperatures are estimated. Several experiments are discussed based on this interpretation.

15.
Nano Lett ; 14(8): 4360-7, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25072099

RESUMO

TiO2 is being widely explored as an active resistive switching (RS) material for resistive random access memory. We report a detailed analysis of the RS characteristics of single-crystal anatase-TiO2 thin films epitaxially grown on silicon by atomic layer deposition. We demonstrate that although the valence change mechanism is responsible for the observed RS, single-crystal anatase-TiO2 thin films show electrical characteristics that are very different from the usual switching behaviors observed for polycrystalline or amorphous TiO2 and instead very similar to those found in electrochemical metallization memory. In addition, we demonstrate highly stable and reproducible quantized conductance that is well controlled by application of a compliance current and that suggests the localized formation of conducting Magnéli-like nanophases. The quantized conductance observed results in multiple well-defined resistance states suitable for implementation of multilevel memory cells.

16.
Phys Rev Lett ; 111(21): 217601, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24313525

RESUMO

Oxygen vacancies are an important type of defect in transition metal oxides. In SrTiO3 they are believed to be the main donors in an otherwise intrinsic crystal. At the same time, a relatively deep gap state associated with the vacancy is widely reported. To explain this inconsistency we investigate the effect of electron correlation in an oxygen vacancy (OV) in SrTiO3. When taking correlation into account, we find that the OV-induced localized level can at most trap one electron, while the second electron occupies the conduction band. Our results offer a natural explanation of how the OV in SrTiO3 can produce a deep in-gap level (about 1 eV below the conduction band bottom) in photoemission, and at the same time be an electron donor. Our analysis implies that an OV in SrTiO3 should be fundamentally regarded as a magnetic impurity, whose deep level is always partially occupied due to the strong Coulomb repulsion. An OV-based Anderson impurity model is derived, and its implications are discussed.

17.
Nat Nanotechnol ; 8(10): 748-54, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24077030

RESUMO

Epitaxial growth of SrTiO3 on silicon by molecular beam epitaxy has opened up the route to the integration of functional complex oxides on a silicon platform. Chief among them is ferroelectric functionality using perovskite oxides such as BaTiO3. However, it has remained a challenge to achieve ferroelectricity in epitaxial BaTiO3 films with a polarization pointing perpendicular to the silicon substrate without a conducting bottom electrode. Here, we demonstrate ferroelectricity in such stacks. Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal the presence of crystalline domains with the long axis of the tetragonal structure oriented perpendicular to the substrate. Using piezoforce microscopy, polar domains can be written and read and are reversibly switched with a phase change of 180°. Open, saturated hysteresis loops are recorded. Thus, ferroelectric switching of 8- to 40-nm-thick BaTiO3 films in metal-ferroelectric-semiconductor structures is realized, and field-effect devices using this epitaxial oxide stack can be envisaged.

18.
J Chem Phys ; 139(4): 044714, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23902010

RESUMO

The biomineral hydroxyapatite (HA) [Ca10(PO4)6(OH)2] is the main mineral constituent of mammal bone. We report a theoretical investigation of the HA surface. We identify the low energy surface orientations and stoichiometry under a variety of chemical environments. The surface most stable in the physiologically relevant OH-rich environment is the OH-terminated (1000) surface. We calculate the work function of HA and relate it to the surface composition. For the lowest energy OH-terminated surface we find the work function of 5.1 eV, in close agreement with the experimentally reported range of 4.7 eV-5.1 eV [V. S. Bystrov, E. Paramonova, Y. Dekhtyar, A. Katashev, A. Karlov, N. Polyaka, A. V. Bystrova, A. Patmalnieks, and A. L. Kholkin, J. Phys.: Condens. Matter 23, 065302 (2011)].


Assuntos
Durapatita/química , Teoria Quântica , Termodinâmica , Catálise , Ouro/química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Titânio/química , Água/química
19.
Phys Rev Lett ; 102(10): 107601, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19392160

RESUMO

We study the ferroelectric stability and surface structural properties of an oxygen-terminated hexagonal YMnO3 ultrathin film using density functional theory. Under an open circuit boundary condition, the ferroelectric state with the spontaneous polarization normal to the (0001) surface is found to be metastable in a single domain state despite the presence of a depolarizing field. Our results highlight that improper ferroelectric ultrathin films can have rather unique properties that are distinct from those of very thin films of ordinary ferroelectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...